• 제목/요약/키워드: Bearing error

검색결과 284건 처리시간 0.029초

축과 베어링 변형을 고려한 헬리컬 기어의 전달오차 해석 (Transmission Error Analysis of Helical Gears in Consideration of Shaft and Bearing Deformation)

  • 박찬일;조도현
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2194-2200
    • /
    • 2002
  • Transmission error is highly related to gear noise. In order to predict the helical gear noise, transmission error analysis is needed. Up to now, the studies for the transmission error were conducted by the modeling of helical gears only. However, since helical gears are supported by the shaft and bearing, transmission error has the effects of the elements. In this study, the procedure to consider the shaft deformation with bearing stiffness for the transmission error analysis is proposed. To do so, the relationship between gear error and shaft deformation is analytically derived. Shaft deformation with bearing stiffness is analyzed by FEM. It is measured in the experimental test rig by the non-contact displacement sensors. Using the tooth error from tooth modification and the shaft deformation, the effects of shaft on the loaded transmission error are investigated.

Bearing-only Localization of GNSS Interference using Iterated Consider Extended Kalman Filter

  • Park, Youngbum;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.221-227
    • /
    • 2020
  • In this paper, the Iterated Consider Extended Kalman Filter (ICEKF) is proposed for bearing-only localization of GNSS interference to improve the estimation performance and filter consistency. The ICEKF is an extended version of Consider KF (CKF) for Iterated EKF (IEKF) to consider an effect of bearing measurement bias error to filter covariance. The ICEKF can mitigate the EKF divergence problem which can occur when linearizing the nonlinear bearing measurement by a large initial state error. Also, it can mitigate filter inconsistency problem of EKF and IEKF which can occur when a weakly observable bearing measurement bias error state is not included in filter state vector. The simulation result shows that the localization error of the ICEKF is smaller than the EKF and IEKF, and the Root Mean Square (RMS) estimation error of ICEKF matches the covariance of filter.

Influence of Manufacturing Errors on the Dynamic Characteristics of Planetary Gear Systems

  • Cheon, Gill-Jeong;Park, Robert G. er
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.606-621
    • /
    • 2004
  • A dynamic analysis using a hybrid finite element method was performed to characterize the effects of a number of manufacturing errors on bearing forces and critical tooth stress in the elements of a planetary gear system. Some tolerance control guidelines for managing bearing forces and critical stress are deduced from the results. The carrier indexing error for the planet assembly and planet runout error are the most critical factors in reducing the planet bearing force and maximizing load sharing, as well as in reducing the critical stress.

가공오차 및 조립오차가 유성기어열의 정특성에 미치는 영향 (Influence of Manufacturing and Assembly Errors on The Static Characteristics of Epicyclic Gear Trains)

  • 오재국;천길정
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1597-1606
    • /
    • 2003
  • Static analysis using hybrid finite element(FE) method has been applied to characterize the influence of position, runout and thickness errors of the sun, ring and planet on the bearing forces and critical tooth stress. Some guidelines for tolerance control to manage critical stress and bearing forces are deduced from the results. Carrier indexing error planet assembly and planet tooth thickness error are most critical to reduce planet bearing force and maximize load sharing as well as to reduce critical stresses. Sun and carrier bearing forces due to errors increase several times more than those of normal condition.

해저면 반사신호의 선 배열 소나 방위 오차 해석 (Estimation of bearing error of line array sonar system caused by bottom bounced path)

  • 오래근;구본성;김선효;송택렬;최지웅;손수욱;김원기;배호석
    • 한국음향학회지
    • /
    • 제37권6호
    • /
    • pp.412-421
    • /
    • 2018
  • 선 배열 소나는 배열 이득으로 인해 단일 소나에 비해 상대적으로 음압이 낮은 표적 신호일 경우에도 방위 추정이 가능한 장점이 있다. 하지만 선 배열 소나에서는 표적의 방향을 나타내는 표적 방위각과 음파의 다중경로에서 발생되는 수직각의 영향으로 방위 오차가 발생하며 이로 인해 수신 신호로부터 표적 방위를 추정하는데 어려움이 존재한다. 수중의 음파 전달 환경에 의해 발생하는 다중경로는 각 경로별로 상이한 수직각을 가지므로 이러한 특성이 선배열 소나의 방위 추정에 미치는 영향에 대해 고려할 필요가 있다. 본 논문에서는 선 배열 소나에서 다중경로의 영향으로 인해 발생하게 되는 방위 오차를 확인하며 해저면 반사 경로에서 수직각에 의한 오차를 모의하여 환경에 따른 방위 오차의 차이를 분석한다. 또한 추정된 방위각에서 거리에 따라 방위 오차를 고려한 예상 표적 방위선을 도출한다.

박용엔진 크랭크 핀 베어링의 형상오차가 최소유막두께에 미치는 영향 (Effect of Roundness Error of a Crank Pin Bearing for a Marine Engine on the Minimum Film Thickness)

  • 하양협;신인동;이상민;이승준;이득우
    • Tribology and Lubricants
    • /
    • 제27권5호
    • /
    • pp.256-263
    • /
    • 2011
  • Bearings of marine engines are operated under severe conditions because of dynamic load and low sliding speed. This paper deals with lubrication analysis of a crank pin bearing for a marine diesel engine. Journal center locus and oil film thickness are compared of crank pin bearing. In the past researches, journal bearings have been studied only about the surface of bearing. In addition to this conventional research, this paper analyzes the effect of roundness error of a journal and a bearing on the minimum film thickness. Numerical analysis has been studied by using Reynolds equation and also Half-Sommerfeld condition is applied as boundary condition. Futhermore, this study investigates the effect of roundness error change on the minimum film thickness. The results demonstrate that the bigger amplitude of roundness error yields, the lower minimum oil film thickness is. In comparison to previous research considered a journal and a bearing individually, the results considering a journal and a bearing together show that amplitude of roundness error of journal has very little effect on the minimum oil film thickness.

원통형 변위센서를 장착한 능동 공기 베어링에 관한 연구 (A Study on the Actively Controlled Aerostatic Journal Bearing using Cylindrical Capacitance Displacement Sensor)

  • 박상신;김규하
    • Tribology and Lubricants
    • /
    • 제24권1호
    • /
    • pp.34-43
    • /
    • 2008
  • In this paper, an actively controlled aerostatic bearing is studied to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled aerostatic bearing is composed of aerostatic bearings, non-contact type of displacement sensors, piezoelectric actuators and controllers. The cylindrical capacitance sensor (CCS) is used as the displacement sensor. The reason for using CCS instead of the commercial gap sensor is that it can give us the pure error motion of the spindle because it removes the roundness error or the geometric errors in the spindle. The controller is designed by the state space equation and quadratic optimal control theory. The characteristic data of the actively controlled aerostatic bearing system in the frequency domain are presented and the stiffness and damping coefficients of the bearing are mentioned. This paper shows the possibility to reduce the motion error up to 6000 rpm.

공기 스테이지의 형상 오차가 운동정밀도에 미치는 영향 (Effect of Shape Error of an Air Stage on Motion Precision)

  • 류대원;이재혁;박상신;김규하
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.68-74
    • /
    • 2020
  • In this study, the effect of the shape error of a guideway on the movement of a stage that uses an air bearing is analyzed. The shape error of moving parts supported by the air bearing is known not to affect the vibrations of moving parts as much as the magnitude of the shape error. This is called the "averaging effect." In this study, the effect of shape error on a guideway, as well as the averaging effect of an air-bearing system, is analyzed theoretically using a dynamic-analysis program. The dynamic-analysis program applies a commercially available code in COMSOL and solves the Reynolds equation between the stage and the guideway, along with the equation of motion of the stage. The stage is modeled as a two-degree-of-freedom system. The shape error is applied to the film thickness function in the form of a sine wave. The stage movement is analyzed using the fast Fourier transform process. The eccentricity and tilting are found to be proportional to the amplitude of the shape error of the guideway. Stage vibrations are less than 10% of the amplitude of the shape error on the guideway. This means that the averaging effect of the air bearing is verified quantitatively. Moreover, if the air supply position matches the shape error in the guideway, there is a notable change in eccentricity and tilting.

외부가압 공기 베어링 지지 스핀들 시스템에서 직각도 오차가 운전 정밀도에 미치는 영향 (An Effect on the Running Accuracy of the Perpendicularity Error in the Spindle System Supported with Externally-Pressurized Air Bearing)

  • 고정석;김경웅
    • Tribology and Lubricants
    • /
    • 제15권3호
    • /
    • pp.257-264
    • /
    • 1999
  • Recently as electronics and semi-conductor industry develop, ultra-precision machine tools that use air-spindle with externally pressurized air bearing appear in need of ultra-precision products which demand high precision property. Effects of air compressibility absorbs the vibration of shaft, this is called averaging effect, however, the higher running accuracy is demanded by degrees, the more important factor is machining errors that affect running accuracy of shaft. Actually, it would be very important in the view points of running accuracy to understand effects of machining errors on the running accuracy of the spindle system quantitatively to design and manufacture precision spindle system in the aspect that efficiency in manufacturing spindle system and performance in operation. So fu, there are some researches on the effects that machining error affect running accuracy. However, because these researches deal with one bearing of spindle system, these results aren't enough to explain how much machining errors affect running accuracy in the typical spindle system overall. In this study, we investigate the effects of the perpendicularity error of bearing and shaft on running accuracy of spindle system that consists of journal and thrust bearing theoretically, and suggest design guideline about shape tolerances.

방위각 오차에 강인한 경사법 기반 근접장 표적 거리 추정 기법 (A Gradient Method Based Near-Field Range Estimation Technique Robust to Direction-of-Arrival Error)

  • 김준두;조점군;이충용
    • 대한전자공학회논문지SP
    • /
    • 제49권2호
    • /
    • pp.130-136
    • /
    • 2012
  • 본 논문에서는 등간격 선형 배열 센서에서 초점빔형성을 이용한 근접장 거리 추정 시에 방위각 오차의 영향을 극복하기 위하여, 거리 방향 탐색 시에 일정 범위 안의 방위각 오차를 보정하여 추정 성능을 향상시키는 기법을 제안하였다. 방위각 오차는 탐색 거리가 주어졌을 때 경사법을 기반으로 빔형성기 출력값이 최대가 되도록 보정하게 된다. 모의실험 결과를 통해, 제안된 기법이 주엽의 폭보다 작은 방위각 오차를 보정하여 거리 추정 오차를 방위각 오차가 없는 경우와 같은 수준으로 감소시킬 수 있음을 확인하였다.