• Title/Summary/Keyword: Bearing Vibration

Search Result 970, Processing Time 0.025 seconds

Abnormal High Vibration by the Accumulated Oil Carbide at the Exhaust Casing Bearing Air Seal of a Gas Turbine (가스터빈 EXHAUST 케이싱 베어링 AIR SEAL에서 오일 탄화물 축적에 의한 이상 진동)

  • Kim, Dong Kwan;Park, Sangho;Koo, Jae Raeyang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.464-469
    • /
    • 2012
  • In the electric power plant, the shaft vibration is one of the very important point for successful long-term operation, because the high reliability unit needs stable rotor dynamic system. However, in the one combined cycle power plant, the abnormal high level shaft vibration analyzed 1 X on the journal bearing has been several times suddenly tripped of Gas turbine due to the accumulated oil carbide. This paper describes how to countermeasure the abnormal shaft vibration in the journal bearing of Gas turbine exhaust bearing in the field.

  • PDF

Study on the Vibration Characteristics of Yaw Gear System for Large-Capacity Offshore Wind Turbine

  • HyoungWoo Lee;SeoWon Jang;Seok-Hwan Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.164-171
    • /
    • 2023
  • Vibration and noise must be considered to maximize the efficiency of a yaw system and reduce the fatigue load acting on a wind turbine. This study investigated a method for analyzing yaw-system vibration based on the change in the load-duration distribution (LDD). A substructure synthesis method was combined with a planetary gear train rotational vibration model and finite element models of the housing and carriers. For the vibration excitation sources, the mass imbalance, gear mesh frequency, and bearing defect frequency were considered, and a critical speed analysis was performed. The analysis results showed that the critical speed did not occur within the operating speed range, but a defect occurred in the bearing of the first-stage planetary gear system. It was found that the bearing stiffness and first natural frequency increased with the LDD load. In addition, no vibration occurred in the operating speed range under any of the LDD loads. Because the rolling bearing stiffness changed with the LDD, it was necessary to consider the LDD when analyzing the wind turbine vibration.

Acoustic Noise and Vibration Reduction of Coreless Brushless DC Motors with an Air Dynamic Bearing

  • Yang, lee-Woo;Kim, Young-Seok;Kim, Sang-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.255-265
    • /
    • 2009
  • This paper presents the acoustic noise and mechanical vibration reduction of a coreless brushless DC motor with an air dynamic bearing used in a digital lightening processor. The coreless brushless DC motor does not have a stator yoke or stator slot to remove the unbalanced force caused by the interaction between the stator yoke and the rotor magnet. An unbalanced force makes slotless brushless DC motors vibrate and mechanically noisy, and the attractive force between the magnet and the stator yoke increases power consumption. Also, when a coreless brushless DC motor is driven by a $120^{\circ}$ conduction type inverter, high frequency acoustic noise occurs because of the peak components of the phase currents caused by small phase inductance and large phase resistance. In this paper, a core-less brushless DC motor with an air dynamic bearing to remove mechanical vibration and to reduce power consumption is applied to a digital lightening processor. A $180^{\circ}$ conduction type inverter drives it to reduce high frequency acoustic noise. The applied methods are simulated and tested using a manufactured prototype motor with an air dynamic bearing. The experimental results show that a coreless brushless DC motor has characteristics of low power consumption, low mechanical vibration, and low high frequency acoustic noise.

Effect of Harmonic Components on the Resonance of Bearing Casing Structures in a Turbine Rotor System (조화성분이 베어링 덮개 구조물의 공진에 미치는 영향)

  • Song, Oh-Seop;Yang, Kyeong-Hyeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.847-852
    • /
    • 2007
  • Design aspects of a bearing casing system of a power plant are mainly focused on the strength and weight of itself to have a more stable system. Since the rotor speed often passes through the critical speed region when the operation begins, the relation between the rotating frequency of the rotor and natural frequency of the casing is very important for a prevention of resonance. However, harmonic components above the rotating frequency have often been overlooked the design for the resonance avoidance. In this paper, it is revealed that resonance vibration is generated when the natural frequency of a bearing casing is close to the one of harmonics of basic rotating frequency(1x), and as a consequence, sensing qualify of seismoprobes attached to the bearing casing structure can be seriously damaged. In order to reduce the resonance vibration, some stiffeners are added to the casing structures. Significant reduction in the magnitude of vibration corresponding to 2x harmonic of basic rotating frequency is observed from both FE analysis and experiment.

Identification of Defect Frequencies in Rolling Element Bearing Using Directional Spectra of Vibration Signals (구름 베어링의 결함 주파수 규명을 위한 방향 스펙트럼의 이용)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.393-400
    • /
    • 1999
  • Defect frequencies of rolling element bearings are experimentally investigated utilizing the two-sided directional spectra of the complex-valued vibration signals measured from the outer ring of defective bearings. The directional spectra make it possible to discern backward and forward defect frequencies. The experimental results show that the directional zoom spectrum is superior to the conventional spectrum in identification of bearing defect frequencies, in particular the inner race defect frequencies.

  • PDF

Oil Whip Phenomena and Countermeasure on Steam Turbine in 350MW Load Thermal Power Plant (350MW급 화력 발전소 증기터빈의 오일 휩 현상 및 대책)

  • 구재량;김연환;배용채;김계연
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1015-1019
    • /
    • 2001
  • There are several bearing systems at the large steam-turbines in thermal power plant. The bearing system is one of the most important parts of rotating machinery. The steam turbine vibrations mainly depend on the bearing oil and the shaft alignment condition. This paper describes on the steam turbine abnormal vibration due to the oil whip in terms of the shaft alignment in the thermal power plant.

  • PDF

Analysis element in influenced spindle vibration of high-speed processing machine (고속 가공기의 스핀들 진동에 영향을 주는 요소 분석)

  • 최영호;윤두표;김광영;최병오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.340-345
    • /
    • 2001
  • In this paper, We have studied on the critical vibration limits of spindle unit for the high speed ball pen tip processing machine. The vibration of bearing can be measured by FFT, and the influence of vibration amplitude due to the Unbalance, bearing deflect, bite and timing belts tension are analyzed. So, the critical vibration limits of spindle is determined by the X, Z directional vibration of spindle Unit.

  • PDF

Vibration from a Shaft-Bearing-Plate System Due to an Axial Excitation of Helical Gears

  • Park, Chan-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2105-2114
    • /
    • 2006
  • In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.

A Study for Application of Active Magnetic Bearing using Quantitative Feedback Theory (Quantitative Feedback Theory를 이용한 능동 자기베어링의 적용 연구)

  • Lee, Gwan-Yeol;Lee, Hyeong-Bok;Kim, Yeong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.107-115
    • /
    • 2001
  • Most of rotating machineries supported by contact bearing accompany lowering efficiency, vibration and wear. Moreover, because of vibration, which is occurred in rotating shaft, they have the limits of driving speed and precision. The rotor system has parametric variations or external disturbances such as mass unbalance variations in long operation. Therefore, it is necessary to research about magnetic bearing, which is able to support the shaft without mechanical contact and to control rotor vibration without being affected by external disturbances or parametric changes. Magnetic bearing system in the paper is composed of position sensor, digital controller, actuating amplifier and electromagnet. This paper applied the robust control method using quantitative feedback theory (QFT) to control the magnetic bearing. It also proposed design skill of optimal controller, in case the system has structured uncertainty, unstructured uncertainty and disturbance. Reduction of vibration is verified at critical rotating speed even external disturbance exists. Unbalance response, a serious problem in rotating machinery, is improved by magnetic bearing using QFT algorithm.

  • PDF

A Study on the Vibration Characteristics of HDD Spindle Motor (하드 디스크 구동 스핀들 모터의 진동 특성에 관한 연구)

  • 장건희;한재혁
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.160-166
    • /
    • 1997
  • The spindle motor in a computer hard disk drive can be modeled as a rotor-bearing system supported by the base plate. Ball bearing is the crucial element to determine the stiffness of the spindle motor, and its design parameters and operating conditions determine the dynamic characteristics of the spindle motor. In the analysis of a rotor-bearing system with a short shaft like a spindle motor, the stiffness of the base plate as well as ball bearings must be considered accurately to analyze the dynamic charateristics of a spindle motor. In this paper, the lateral and the axial vibration of the spindle motor were analyzed by the transfer matrix method for the dual-shaft rotor-bearing model and by d.o.f lumped parameter model, respectively. The simulation results had good agreements with the experimental modal testing. The dynamic characteristics were fully investigated for the change of the major design parameters of the spindle motor, i.e. the preload of ball bearings and the rotational speed.

  • PDF