• 제목/요약/키워드: Bearing Rating Life

검색결과 14건 처리시간 0.017초

작동하중과 회전속도를 고려한 자동차용 휠 베어링의 수명평가 (Bearing Life Evaluation of Automotive Wheel Bearing Considering Operation Loading and Rotation Speed)

  • 이승표
    • 대한기계학회논문집A
    • /
    • 제40권6호
    • /
    • pp.595-602
    • /
    • 2016
  • 자동차용 휠 베어링은 회전운동을 전달하고 차량의 무게를 지지해주는 중요한 부품이다. 최근 $CO_2$ 배출가스 저감과 연비 규제에 따라서 자동차 경량화 및 소형화 요구는 점점 증가하고 있고, 이에 부응하여 베어링의 수명 평가기술은 더욱 그 필요성이 증가하고 있다. 휠 베어링의 내구수명은 고려해야 할 인자들이 매우 다양하며 이들이 서로 복잡하게 연관되어 있으므로 수명을 예측하는 것이 쉽지 않다. 본 논문에서는 자동차용 휠 베어링의 수명에 영향을 끼치는 많은 인자들 중에서 작동하중과 회전속도를 변화시키면서 수명을 시험하였고, 이를 ISO 국제표준에서 제안하는 이론수명인 기본정격수명과 보정정격수명 결과와 비교하였다. 이들 수명을 비교한 결과, 기본정격수명과 보정정격수명 모두 시험수명과 차이가 존재하며, 기본정격수명 보다 보정정격수명이 시험수명을 상대적으로 잘 예측함을 알 수 있었다.

베어링강의 개발동향 (The Current Status of the Development of Bearing Steels)

  • 유선준
    • 소성∙가공
    • /
    • 제12권2호
    • /
    • pp.88-93
    • /
    • 2003
  • Several alloy bearing steels have been starting to replace for conventional high carbon and high chromium bearing steel since 1980. In this paper the global bearing developing trends were summarized in several important aspects- developments in alloy bearing steels for improved service life, development of inclusion rating method in bearing steel and developments in bearing service life testing.

각 어긋남을 고려한 각접촉 볼베어링의 피로수명 해석 (Fatigue Life Analysis for Angular Contact Ball Bearing with Angular Misalignment)

  • 배규현;통반칸;홍성욱
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.53-61
    • /
    • 2016
  • Angular misalignment has a significant effect on the characteristics of angular contact ball bearings (ACBBs). This paper presents an analysis of fatigue life for ACBBs subjected to angular misalignment. A simulation model is developed with de Mul's bearing model and the ISO basic reference rating life model. Simulation is performed to calculate the life of the ACBBs subjected to angular misalignment. The numerical results show that angular misalignment influences the load distribution significantly, thus reducing the bearing rating life. The fatigue life of ACBBs is decreased by angular misalignment regardless of axial preload, external radial load and rotational speed. The results show that angular misalignment should be maintained at less than 1mrad for ACBBs.

경량 베어링 수명 특성에 관한 연구 (A Study on the Life Characteristics of Lightweight Bearings)

  • 이충성;박종원;임신열;강보식
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.819-825
    • /
    • 2021
  • In the industry, the use of lightweight bearings is increasing to minimize motor power loss, and in particular, the application of next-generation systems such as robots and drones is increasing. Bearing manufacturers are producing lightweight bearings by changing the bearing material, but related researches is insufficient. In this paper, life test and structural analysis were performed for lightweight bearings, and shape parameters and scale parameters were derived based on the life test results. It was confirmed that the shape parameter was 2.52 and the scale parameter was 164 hours. As a result of calculating the dynamic load rating based on the B10 life, it was confirmed that the dynamic load rating of the lightweight bearing was 7% compared to the formula suggested by ISO 281. The reason is that the material of the retainer, which is a major failure part, is a polyamide 66 series that reacts sensitively to heat, so It is judged to show a lot of difference from the ISO 281 calculation formula.

반경방향과 모멘트하중 하에서의 깊은홈 볼베어링의 피로수명 평가 -동등가하중식 제안- (Prediction of the Fatigue Life of Deep Groove Ball Bearing under Radial and Moment Loads -Equivalent Dynamic Loads-)

  • 김완두;한동철
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1654-1663
    • /
    • 1994
  • Even if the ball bearing was conservatively designed considering the dynamic capacity and the rating life, sometimes the bearing was early failed on account of the misalignment and the lubricant contaminations etc. Misalignment was generated when bearing-shaft system transmitted large power and when the bearing was inadequately mounted. It was possible to predict the fatigue life of ball bearing under the misalignment considering the motions of ball, cage and raceway, and the factors of the effect on fatigue life. Misalignment affected on ball bearing as radial and moment load and the relationships between misalignment and moment were obtained. In this paper, the analysis of the load distributions between ball and raceway, and the prediction of fatigue life of deep groove ball bearing under radial and moment loads were carried out. And, the new formulation of equivalent dynamic load considering the effects of moment load was proposed.

탄소 표면경화처리 구름베어링의 유효 경화 깊이에 대한 고찰 (Study on Effective Case Depth for Case Hardened Rolling Bearings)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제32권1호
    • /
    • pp.18-23
    • /
    • 2016
  • The effective case depth for case-hardened rolling bearing has been discussed. For this purpose, rolling contact fatigue tests for ball bearings built with inner race of various hardness values were conducted until L10 calculating rating life using a bearing life test machine under radial loading. Then, the distribution of residual stress below the inner raceway, which depended on the hardness value, was measured by X-ray diffraction. As a result, the linear relationship was established between the hardness value of the inner race and the theoretical shear stress evaluated at the depth where the residual stress disappeared below the inner raceway. Based on the relationship, it could be found that the factor of safety in bearing manufacturer’s rules for the effective case depth of case hardened rolling bearings was set higher. However, it could be also found that the hardness values at the depth where the maximum shearing stress acted below the raceway surface in a tapered roller bearing hardened by the carburizing process, were not sufficient for preventing plastic deformation under the basic dynamic load rating. Consequently, further efforts were still required to reduce or to disperse the contact load on the material design of a rolling bearing in order to prolong its life.

특수 목적 차량의 수상 추진체용 카단 샤프트의 유니버셜 조인트에 대한 응력 및 수명 평가 (Stress and Life Evaluation of Universal Joint of Cardan Shaft for Waterjet System of Special-Purpose Vehicle)

  • 배명호;이태영;조연상
    • Tribology and Lubricants
    • /
    • 제36권1호
    • /
    • pp.34-38
    • /
    • 2020
  • The powertrain of the waterjet system of a special-purpose vehicle makes use of the cardan shaft, which is composed of universal joints and shafts. These universal joints, composed of spiders and needle roller bearings, have to be designed with consideration for the bending and compressive stresses of the spiders and needle roller bearings, and the rating lives of the bearings. The bending and compressive stresses of the spider and bearing of a universal joint have been studied by many researchers. However, to design a universal joint effectively, overall consideration of the different specifications of needle roller bearings is necessary. In this study, the bending stresses of spiders and compressive stresses of needle roller bearings are calculated to design universal joints for powertrain cardan shafts with different roller diameters of bearing. Furthermore, the rating lives of the needle roller bearings are predicted using the calculated basic dynamic load ratings of the bearings. As a result, roller diameters less than 𝜙2.5 mm are found suitable through an analysis of the bending stress of the spider. All compressive stresses between spider and bearing, regardless of roller diameter, satisfy the requirements. Moreover, roller diameters of more than 𝜙2 mm are found suitable for the required rating life.

풍력터빈 기어박스의 베어링 수명 계산에 관한 연구 (Study on Bearing Life Calculation for Wind Turbine Gearbox)

  • 양용군;최창;장기;허철수;류성기
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.21-27
    • /
    • 2014
  • Currently, wind power has become a major research field in the area of sustainable development. As one important component of a wind turbine transmission system, most instances of downtime due to a gearbox failure are caused by bearing failures. Gearboxes for wind turbines must have the highest levels of reliability over a period of approximately 20 years, withstanding high dynamic loads. At the same time, a lightweight design and cost minimization efforts are required. These demands can only be met with a well-thought-out design, high-quality materials, a high production quality and proper maintenance. In order to design a reliable and lightweight gearbox, it is necessary to analyze methods pertaining to the bearing rating lifetimes of the standard and of different companies, also including calculation methods for modification factors. This can determine the influence of the bearing lifetime.

선회용 유성 기어박스의 유성기어 베어링 설계 (Planet Bearing Design of Slewing Planetary Gearbox)

  • 박영준;이근호;송진섭;남용윤;박성하
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.316-323
    • /
    • 2012
  • In order to meet the service life of planetary gearbox, a planet bearing, well known as the component with the highest failure rate, is designed. To predict the bearing fatigue life, ISO standard(ISO/TS 16281) is used, and the design parameters of the bearing are optimized using a parametric method. The whole planetary gearbox model is developed using a commercial software to calculate loads acting on planet bearings accurately. The results state that the designed bearings are satisfied with the life of 15,000hours, and the bearings that consist of 22rollers of 58mm have 1.6times longer life and better load sharing relatively than 22rollers of 28.5mm. Also, the increase in preload of taper roller bearings on the output pinion shaft prolongs the life of planet bearings regardless of roller's length.

플러그인 HEV용 베어링 수명 및 응력분포의 분석예측 (Analytical Prediction of Bearing Life and Load Distribution for Plugin HEV)

  • 장기;강재화;윤기백;류성기
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.1-7
    • /
    • 2012
  • The transportation is almost dependent on a single fuel petroleum with transportation energy dilemma. Hybrid Electric Vehicle(HEV) technology holds more advantages on efficiency improvements for petroleum consumption at the transportation. And bearing is recognized as the important component of gearbox. Gearboxes for HEV transmission have been ensured the highest reliability over some years in withstanding high dynamic loads. At the same time, the demands of lightweight design and cost minimization are required by thought-out design, high-quality material, superior production quality and maintenance. In order to design a reliable and lightweight gearbox, it is necessary to analyze bearing rating life methods between standard and different bearing companies with calculation methods for modification factors. In this paper, the influence of life time of bearings will be pointed out. Bearing contact stress and load stress distribution of HEV gearbox are obtained and compared with Romaxdesigner and BearinX. And the unequal wear of the left bearing for the gearbox intermediate shaft is investigated between simulation and test.