• Title/Summary/Keyword: Bearing Number

Search Result 649, Processing Time 0.031 seconds

Use of Random Coefficient Model for Fruit Bearing Prediction in Crop Insurance

  • Park Heungsun;Jun Yong-Bum;Gil Young-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.381-394
    • /
    • 2005
  • In order to estimate the damage of orchards due' to natural disasters such as typhoon, severe rain, freezing or frost, it is necessary to estimate the number of fruit bearing before and after the damage. To estimate the fruit bearing after the damages are easily done by delegations, but it cost too high to survey every insured farm household and calculate the fruit bearing before the damage. In this article, we suggest to use a random coefficient model to predict the numbers of fruit bearing in the orchards before the damage based on the tree age and the area information.

Vibration Characteristics According to Wear Progress of Ball Bearings (볼 베어링의 마멸 상태에 따른 진동 특성의 변화)

  • Cho, SangKyung;Park, JoungWoo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.141-147
    • /
    • 2017
  • The vibration data of bearings are very useful for monitoring and determining the condition of the bearings. The defect frequencies of ball bearings have been used for monitoring there condition. However, it is not easy to verify the defect frequencies as the wear progress. Therefore there is a need for an easy method to monitor the damages of bearings in real-time and to observe the variations in vibration characteristics as the wear progress. In this study, a bearing test equipment is constructed to diagnose the damage of bearings. The friction coefficient and vibration data are measured by using a torque sensor and an acceleration sensor, and the correlation between the measured data is analyzed to diagnose the condition of the bearing. We reached the following conclusions from the results. When the ball surface, inner and outer rings of a ball bearing are damaged, the friction coefficient increases to over 0.02 with an adhesion on the surface. Moreover this damage occurs more quickly with an increase in the number of revolutions. In the vibration characteristics, the amplitude of vibration wave appears high with an increase in the friction coefficient. In the high frequency range between 1000 and 2000 Hz, a wide range of frequency components with high amplitude occurs continuously irrespective of the number of revolutions.

Application of six neural network-based solutions on bearing capacity of shallow footing on double-layer soils

  • Wenjun DAI;Marieh Fatahizadeh;Hamed Gholizadeh Touchaei;Hossein Moayedi;Loke Kok Foong
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.231-244
    • /
    • 2023
  • Many of the recent investigations in the field of geotechnical engineering focused on the bearing capacity theories of multilayered soil. A number of factors affect the bearing capacity of the soil, such as soil properties, applied overburden stress, soil layer thickness beneath the footing, and type of design analysis. An extensive number of finite element model (FEM) simulation was performed on a prototype slope with various abovementioned terms. Furthermore, several non-linear artificial intelligence (AI) models are developed, and the best possible neural network system is presented. The data set is from 3443 measured full-scale finite element modeling (FEM) results of a circular shallow footing analysis placed on layered cohesionless soil. The result is used for both training (75% selected randomly) and testing (25% selected randomly) the models. The results from the predicted models are evaluated and compared using different statistical indices (R2 and RMSE) and the most accurate model BBO (R2=0.9481, RMSE=4.71878 for training and R2=0.94355, RMSE=5.1338 for testing) and TLBO (R2=0.948, RMSE=4.70822 for training and R2=0.94341, RMSE=5.13991 for testing) are presented as a simple, applicable formula.

A Study on a Finite Element Analysis Method Using Simplified Ball Models of Wind Turbine Ball Bearings (풍력발전기용 볼 베어링의 단순화 볼 모델을 이용한 해석기법 연구)

  • Seung-Woo Kim;Jung-Woo Song;Jun-Pyo Hong;Jong-Hoon Kang
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.21-28
    • /
    • 2023
  • This study focuses on the analysis of slewing ball bearings in wind turbines. Slewing bearings have an outer diameter of several meters, and hundreds of balls are in contact with the raceway. Due to the large number of balls and raceway contact conditions, it is difficult to accurately analyze contact stresses using general analysis techniques. To analyze the contact stress of a slewing ball bearing, the sub-modeling method is applied, which is a technique that first analyzes the displacement of the entire model and then analyzes the local stress at the point of maximum displacement. In order to reduce the displacement analysis time of the entire ball bearing, the technique of replacing the ball with a nonlinear spring is adopted. The analytical agreement of the simplified model was evaluated by comparing it with a solid mesh model of the ball for three models with different spring attachment methods. It was found that for the condition where a large turnover moment is applied to the bearing, increasing the number of spring elements gives the closest results to modeling the ball with a solid mesh.

Design Methodology of Automotive Wheel Bearing Unit with Discrete Design Variables (이산 설계변수를 포함하고 있는 자동차용 휠 베어링 유닛의 설계방법)

  • 윤기찬;최동훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.122-130
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting spae. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations.

  • PDF

A New Approach Increasing the Rotational Accuracy of Ball- Bearing Spindle by Using Proper Bearing Positioning

  • Yegor. A.;Lee, Choon-Man;Chung, Won-Jee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.15-21
    • /
    • 2003
  • In order to improve the quality of a spindle unit it is important to increase its rotational accuracy. The rotational accuracy of a spindle unit can be defined as the stability or immobility of its spindle axis while rotating. Spindle rotation in the rolling bearings causes the disturbing influence, which leads to the oscillation of a rotation axis. The purpose of this study is to investigate the oscillation sources and find a way to decrease the runout without additional expenses. The main source of oscillation is the interaction between rolling bodies and ring races. The first oscillation source was the out-of-shape imperfection of inner bearing ring. The mutual compensation of oscillation by proper rings orientation was proposed, which sometimes allow to decrease the radial runout of spindle rotation axis by approximate 40% down. Also the outer ring harmonics were explored as the second oscillation source. The analysis shows the dependency between the number of rolling bodies and the outer ring race harmonics. The conclusion on the orientation of bearing cages and the bearing rings was made, which makes possible to obtain the optimal variant of their mounting in the spindle unit when the rotational accuracy of the spindle is maximal, and the spindle runout considerably less.

Effects of the Multipath Propagation on the Source Bearing Detection of HLA at near range (다중경로 음파전달이 HLA의 근거리 방위탐지에 미치는 영향)

  • Park, Joung-Soo;Chun, Seung-Yong;Lee, Sung-Eun;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.100-105
    • /
    • 1997
  • To analyze the multipath propagation effects on the source bearing detection of HLA(Horizontal Line Array), the conversion mechanism of the multipath into the bearing is described, and the bearing is estimated from the multipath modeled with typical sound velocity structures of the East and the South Sea of Korea. The erroneous bearing is observed from the beamforming outputs simulated with the modeled multipath, and the erroneous phenomena are analyzed. In case of the East Sea, since the multipath propagation with a high receiving angle occurs due to strong inverse slope of the sound velocity structure, it is possible that the estimated source bearing is different from the real source bearing, and that the number of the source is misrecognized.

  • PDF

Effects of Bearing Arrangement on the Dynamic Characteristics of High-speed Spindle (베어링 배열방식이 고속 스핀들의 동특성에 미치는 영향)

  • Hong, Seong-Wook;Choi, Chun-Seok;Lee, Chan-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.854-863
    • /
    • 2013
  • High-speed spindle systems typically employ angular contact ball bearings, which can resist both axial and radial loading, and exhibit high precision and durability. We investigated the effects of the arrangement of the angular contact ball bearings on the dynamics of high-speed spindle systems. The spindle dynamics were studied with a number of spindle-bearing models, and the location of the bearings was varied, along with the rotational speed and the preload. A finite element spindle model and a bearing model were used, and simulated data showed that the bearing arrangement significantly affected the spindle dynamics. Furthermore, the main effects were due to the cross coupling terms between the transverse and rotational motions of the ball bearings. The coupling stiffness terms were found to influence the spindle dynamics, depending on the mode shapes. An extensive discussion is provided on the effects of the bearing arrangement on the dynamics of the spindle.

Pile bearing capacity prediction in cold regions using a combination of ANN with metaheuristic algorithms

  • Zhou Jingting;Hossein Moayedi;Marieh Fatahizadeh;Narges Varamini
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.417-440
    • /
    • 2024
  • Artificial neural networks (ANN) have been the focus of several studies when it comes to evaluating the pile's bearing capacity. Nonetheless, the principal drawbacks of employing this method are the sluggish rate of convergence and the constraints of ANN in locating global minima. The current work aimed to build four ANN-based prediction models enhanced with methods from the black hole algorithm (BHA), league championship algorithm (LCA), shuffled complex evolution (SCE), and symbiotic organisms search (SOS) to estimate the carrying capacity of piles in cold climates. To provide the crucial dataset required to build the model, fifty-eight concrete pile experiments were conducted. The pile geometrical properties, internal friction angle 𝛗 shaft, internal friction angle 𝛗 tip, pile length, pile area, and vertical effective stress were established as the network inputs, and the BHA, LCA, SCE, and SOS-based ANN models were set up to provide the pile bearing capacity as the output. Following a sensitivity analysis to determine the optimal BHA, LCA, SCE, and SOS parameters and a train and test procedure to determine the optimal network architecture or the number of hidden nodes, the best prediction approach was selected. The outcomes show a good agreement between the measured bearing capabilities and the pile bearing capacities forecasted by SCE-MLP. The testing dataset's respective mean square error and coefficient of determination, which are 0.91846 and 391.1539, indicate that using the SCE-MLP approach as a practical, efficient, and highly reliable technique to forecast the pile's bearing capacity is advantageous.

Bearing Capacity of Shallow Foundation on Geosynthetic Reinforced Sand (토목섬유로 보강된 얕은기초 모래지반의 지지력)

  • Won Myoung-Soo;Ling Hoe I.;Kim You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.107-117
    • /
    • 2004
  • A series of model tests were conducted to investigate how the number of reinforcement layers, stiffnesses, types of reinforcement material and buried depth of a flexible pipe can affect bearing capacity-settlement curve at a loose sand foundation. In the test results, whereas the type of failure in unreinforced sand was local shear, the type of failure, for model tests with more than 2 reinforcement layers in loose sand, was general shear: The number of the optimum reinforcement layers was found to be two: Stiffness and type of reinforcement were more important than the maximum tensile strength of reinforcement in improving bearing capacity. When the depth of buried pipe from the sand surface was less than the width of the footing, test results showed that both bearing capacity and ultimate bearing capacity of buried pipe in unreinforced sand significantly decreased, and the type of failure in the reinforced sand changed from general shear to local shear.