• Title/Summary/Keyword: Bearing Movement

Search Result 157, Processing Time 0.029 seconds

Dynamic response of a HDD pivot ball bearing acted by Hertzian contact force (Hertzian contact force에 의한 HDD pivot ball bearing의 동적 반응 분석)

  • Yoon, Joo Young;Park, No-Cheol;Lim, Gunyeop;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.993-993
    • /
    • 2014
  • Increasing the density magnetic recording of a hard disk drive needs to improve position control of a slider. We have troubles analyzing position of a slider by nonlinear property of pivot ball bearing. Many researches analyze a hard disk drive to change pivot ball bearing part from balls to springs. Pivot ball bearing operates by rotation and movement of balls. This study considers Hertzian contact force when balls contact with outer race to analyze nonlinear movement of a ball bearing. Experiment of this study measures movement of a circular center of a pivot ball bearing. We also verify the simulation results and the experiment results.

  • PDF

Effect of Task-Oriented Approach on Weight-Bearing Distribution and Muscular Activities of the Paretic Leg During Sit-to-Stand Movement in Chronic Stroke Patients (과제지향적 접근법이 만성 뇌졸중 환자의 일어서기 동작 시 환측다리의 체중지지비율과 근활성도에 미치는 영향)

  • Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.18 no.2
    • /
    • pp.18-26
    • /
    • 2011
  • The purpose of this study was to investigate the effects of a task-oriented approach on weight-bearing distribution and muscular activities of the paretic leg during sit-to-stand movement in 18 chronic stroke patients. Both groups were received neurodevelopmental treatment for 30 min/day and then the experimental group ($n_1$=9) followed additional a task-oriented approach (sit-to stand training with controlled environment) and the control group ($n_2$=9) followed a passive range of motion exercise for 15 min/day, five days/week, for four weeks. Weight-bearing distribution and muscular activities of the paretic leg during sit-to-stand movement were measured before and after four weeks of training. There was significantly improved weight-bearing distribution of the paretic leg during sit-to-stand movement in the experimental group compared with that of the control group after four weeks of training (p<.05). But electromyographic activities of the quadriceps and the tibialis anterior of the paretic leg were not significantly different (p>.05). Thus, it is necessary to apply a task-oriented approach to improve the weight-bearing distribution of the paretic leg during sit-to-stand movement in chronic stroke patients.

Influence of the environments on the movement precision of the guide table using externally pressurized porous air bearing (다공질 정압공기 베어링을 이용한 직진 테이블에 있어 주위환경이 움직임 정밀.정확도에 미치는 영향)

  • 한응교;허석환;노병옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.721-729
    • /
    • 1988
  • Recently, the precision required by precision manufacturing and machinery related to electronics is within the domain of submicron that it is difficult to evaluate them by traditional measuring equipments and methods. Accordingly, precision of sub 0.1.mu.m super precise position-decision-apparatus and straight-guide air bearing have been researched and they are almost ready to be used. In utilizing straight-guide-table for super-precision-measurement which used externally pressurized porous air bearing as a way of externally pressurized air bearing, the high-precision-straight movement is the most crucial. In this study, the researcher conducted the experimental study with trial manufacture to see how the surrounding temperature and support condition influenced the selection and allocation of the machine composing element which is important to the high-precision-straight movement. The researcher finding showed that when the property of the rail part and support part of the semi-closed slider form is different, the heat generation of the working motor and surrounding temperature influence the high-precision-straight movement significantly and the researcher showed the influence of the condition of central load and eccentric load to the straight movement precision when the support stand of the straight-table was supported by numerical values.

Dynamic analysis of an elastic shaft with consideration about Journal bearing (압축기의 Bearing 윤활을 고려한 탄성체 Shaft의 동적 거동 해석)

  • Lee, Yun-gon;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.768-770
    • /
    • 2014
  • A shaft of a reciprocating compressor receives bending force by piston, which makes movement of the shaft. The movement of the shaft affects durability and becomes a source of noise. In this paper, a cylinder is modeled by considering motion of a suction and discharge valve. The journal bearing is modeled by Bernoulli's equation. The trajectory of shaft which is considered cylinder and journal bearing can be calculated by finite element method. It will help a design of shaft to increase durability and reduce noise.

  • PDF

Experimental Study on the Stiffness and Damping Coefficients of a Tilting Pad Journal Bearing (틸팅패드 저널베어링의 유막 강성 및 감쇠계수에 대한 실험적 연구)

  • Ha, Hyun-Cheon;Yang, Seong-Heon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.32-38
    • /
    • 1999
  • An experimental study is performed to investigate the frequency effects of the excitation force on the linear stiffness and damping coefficients of a LOP (load on pad) type five-pad tilting pad journal bearing with the diameter of 300.91 mm and the length of 149.80 mm. The main parameter of interest in the present work is excitation frequency to shake the test bearing. The excitation frequency is controlled independently, using orthogonally mounted hydraulic exciters. The relative movement between the bearing and shaft, and the acceleration of the bearing casing are measured as a function of excitation frequency using the different values of bearing load and shaft speed. Measurements show that the variation of excitation frequency has quite a little effect on both stiffness and damping coefficients. Both direct stiffness and damping coefficients in the direction of bearing load decrease by the increase of shaft speed, but increase with the bearing load.

  • PDF

Experimental Study on the Stiffness and Damping Coefficients of a Tilting Pad Journal Bearing (틸팅패드 저어널 베어링의 유막 강성 및 감쇠 계수에 대한 실험적 연구)

  • Ha, Hynn Cheon;Yang, Seong Heon
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.173-179
    • /
    • 1998
  • An experimental study is performed to investigate the frequency effects of the excitation force on the linear stiffness and damping coefficients of a LOP (load on pad) type five-pad tilting pad journal bearing with the diameter of 300.91 mm and the length of 149.80 mm. The main parameter of interest in the present work is excitation frequency to shake the test bearing. The excitation frequency is controlled independently, using orthogonally mounted hydraulic exciters. The relative movement between the bearing and shaft, and the acceleration of the bearing casing are measured as a function of excitation frequency using the different values of bearing load and shaft speed. Measurements show that the variation of excitation frequency has quite a little effect on both stiffness and damping coefficients. Both direct stiffness and damping coefficients in the direction of bearing load decrease by the increase of shaft speed, but increase with the bearing load.

  • PDF

Study on the Dynamic Behaviors of Engine Bearing with the Inertia Effect of Crank Pin Journal (크랭크 핀의 질량관성을 고려한 엔진 베어링의 틈새 거동 연구)

  • Jang Siyoul
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • Investigation of the mass effect on the journal traces in the clearance of engine bearing has been performed for better design of mass distribution of crank system components such as crank pin, piston, con-rod, balance weight, crank throw weight, etc. as well as for better oil reaction behaviors to the applied forces from the cylinder pressures on the bearing. In this preliminary study, crank pin traces in the engine bearing clearance are computed by varying the equivalent magnitude of crank pin mass that includes the masses of crank pin, piston, con-rod. etc.. while most previous studies regarding journal traces in the bearing clearance neglect the inertia effects of crank pin mass. Although the inertia effect of pill mass is negligibly small compared to viscous force by ${\pi}bearing$ theory, it is found that it gives a great amount of influences on the journal traces in full bearing computation $(2\pi\;bearing\;theory)$ under the dynamic loading conditions.