• 제목/요약/키워드: Bearing Faults

검색결과 96건 처리시간 0.024초

터보분자펌프용 고장허용 자기베어링 시스템 설계 및 개발 (Design and Implementation of a Fault-Tolerant Magnetic Bearing System For Turbo-Molecular Vacuum Pump)

  • 조성락;노명규;박병철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.760-765
    • /
    • 2004
  • One of the obstacles for a magnetic bearing to be used in the wide range of industrial applications is the failure modes associated with magnetic bearings, which we don't expect for conventional passive bearings. These failure modes include electric power outage, power amplifier faults, position sensor faults, and the malfunction of controllers. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate in spite of some faults in the system. In this paper, we designed and implemented a fault-tolerant magnetic bearing system for a turbo-molecular vacuum pump. The system can cope with the actuator/amplifier faults as well as the faults in position sensors, which are the two major fault modes in a magnetic bearing system.

  • PDF

고장허용 회전체 자기베어링 시스템의 설계 연구 (A Study on the Design of a Fault-Tolerance Rotor Magnetic Bearing Systems)

  • 조성락;경진호;노승국;박종권
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.304-308
    • /
    • 2004
  • One of the obstacles for a magnetic bearing to be used in the wide range of industrial applications is the failure modes associated with magnetic bearings. These failure modes include power amplifier faults, position sensor faults, and the malfunction of controllers. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate in spite of some faults. In this paper, we designed and tested a fault-tolerant magnetic bearing system. The system can cope with the actuator faults as well as the faults in position sensors, which are the two major fault modes in a magnetic bearing system.

  • PDF

최소 분산 캡스트럼을 이용한 노이즈 속에 묻힌 임펄스 검출 방법-베어링 결함 검출에의 적용 (Detection of Impulse Signal in Noise Using a Minimum Variance Cepstrum -Application on Faults Detection in a Bearing System)

  • 최영철;김양한
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.985-990
    • /
    • 2000
  • The signals that can be obtained from rotating machines often convey the information of machine. For example, if the machine under investigation has faults, then these signals often have pulse signals, embedded in noise. Therefore the ability to detect the fault signal in noise is major concern of fault diagnosis of rotating machine, In this paper, minimum variance cepstrum (MV cepstrum) . which can easily detect impulse in noise, has been applied to detect the type of faults of ball bearing system. To test the performance of this technique. various experiments have been performed for ball bearing elements that have man made faults. Results show that minimum variance cepstrum can easily detect the periodicity due to faults and also shows the pattern of excitation by the faults.

  • PDF

볼 베어링의 조기 결함 검출 방법들의 비교 (The Comparison Between Fault Detection Methods about Early Faults in a Ball Bearing)

  • 박춘수;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.200-203
    • /
    • 2005
  • Ball bearings not only sustain the system, but permit the rotational component to rotate. Excessive radial or axial load and many other reasons can cause faults to be created and grown rapidly in each component. The grown faults make noise and vibration, which can make the system unstable. Therefore, it is important to detect faults as early as possible. For this reason, there have been many researches on fault detection method of early faults in a ball bearing. The fault defection methods can be categorized to several groups by signal processing methods. Not all the methods are efficient for finding early faults. We select representative methods known as efficient for detecting early faults and compare the results for inspecting which method is effective.

  • PDF

Design and Implementation of a Fault-Tolerant Magnetic Bearing System

  • Park, B.C.;Noh, M.D.;Ro, S.K.;Kyung, J.H.;Park, J.K.
    • KSTLE International Journal
    • /
    • 제4권2호
    • /
    • pp.37-42
    • /
    • 2003
  • One of the obstacles for a magnetic bearing to be used in the wide range of industrial applications is the failure modes associated with magnetic bearings, which we don't expect for conventional passive bearings. These failure modes include electric power outage, power amplifier faults, position sensor faults, and the malfunction of controllers. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate in spite of some faults in the system. In this paper, we designed a fault-tolerant magnetic bearing system for a turbo-molecular vacuum pump. The system can cope with the actuator/amplifier faults which are the most common faults in a magnetic bearing system. We implemented the existing fault-tolerant algorithms to experimentally prove the adequacy of the algorithms for industrial applications. As it turns out, the system can operate even with three simultaneously failing poles out of eight actuator poles.

신호대 잡음비에 무관한 허브 베어링 결함 검출 방법 (Faults Detection Method Unrelated to Signal to Noise Ratio in a Hub Bearing)

  • 최영철;김양한;고을석;박춘수
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1287-1294
    • /
    • 2004
  • Hub bearings not only sustain the body of a cat, but permit wheels to rotate freely. Excessive radial or axial load and many other reasons can cause defects to be created and grown in each component. Therefore, nitration and noise from unwanted defects in outer-race, inner-race or ball elements of a Hub bearing are what we want to detect as early as possible. How early we can detect the faults has to do with how the detection algorithm finds the fault information from measured signal. Fortunately, the bearing signal has Periodic impulse train. This information allows us to find the faults regardless how much noise contaminates the signal. This paper shows the basic signal processing idea and experimental results that demonstrate how good the method is.

최소 분산 켑스트럼을 이용한 자동차 허브 베어링 결함 검출 (Faults Detection in Hub Bearing with Minimum Variance Cepstrum)

  • 박춘수;최영철;김양한;고을석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.593-596
    • /
    • 2004
  • Hub bearings not only sustain the body of a car, but permit wheels to rotate freely. Excessive radial or axial load and many other reasons can cause defects to be created and grown in each component. Therefore, vibration and noise from unwanted defects in outer-race, inner-race or ball elements of a Hub bearing are what we want to detect as early as possible. How early we can detect the faults has to do with how the detection algorithm finds the fault information from measured signal. Fortunately, the bearing signal has periodic impulse train. This information allows us to find the faults regardless how much noise contaminates the signal. This paper shows the basic signal processing idea and experimental results that demonstrate how good the method is.

  • PDF

Support Vector Machine Based Bearing Fault Diagnosis for Induction Motors Using Vibration Signals

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Choi, Kyeong-Ho;Lee, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1558-1565
    • /
    • 2015
  • In this paper, we propose a new method for detecting bearing faults using vibration signals. The proposed method is based on support vector machines (SVMs), which treat the harmonics of fault-related frequencies from vibration signals as fault indices. Using SVMs, the cross-validations are used for a training process, and a two-stage classification process is used for detecting bearing faults and their status. The proposed approach is applied to outer-race bearing fault detection in three-phase squirrel-cage induction motors. The experimental results show that the proposed method can effectively identify the bearing faults and their status, hence improving the accuracy of fault diagnosis.

베어링 시스템에서 결함을 초기에 진단하는 방법 (Early Detection of Faults in a Ball Bearing System)

  • 최영철;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1102-1107
    • /
    • 2000
  • The signals that can be obtained from a rotating machine often convey the information of machine. For example, if the machine under investigation has faults, then we can measure the signal which has a pulse train, embedded in noise. Therefore the ability to detect the fault signal in noise determines the degree of diagnosis level of rotating machine. In this paper, minimum variance cepstrum (MV cepstrum), which can easily detect impulse in noise, has been applied to detect the type of faults of ball bearing system. To test the performance of this technique, experiment has been performed for ball bearing elements that have man made faults. Results show that minimum variance cepstrum can easily detect the periodicity due to faults.

  • PDF

베어링 초 미세 결함 검출방법과 실제 적용 (Bearing ultra-fine fault detection method and application)

  • 박춘수;최영철;김양한;고을석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1093-1096
    • /
    • 2004
  • Bearings are elementary machinery component which loads and do rotating motion. Excessive loads or many other reasons can cause incipient faults to be created and grown in each component. Moreover, it happens that incipient faults which were caused by manufacturing or assembling process' errors of the bearings are created. Finding the incipient faults as early as possible is necessary to the bearings in severe condition: high speed or frequently varying load condition, etc. How early we can detect the faults has to do with how the detection algorithm finds the fault information from measured signal. Fortunately, the bearing fault signal makes periodic impulse train. This information allows us to find the faults regardless how much noise contaminates the signal. This paper shows the basic signal processing idea and experimental results that demonstrate how good the method is.

  • PDF