• Title/Summary/Keyword: Bearing Bar

Search Result 134, Processing Time 0.025 seconds

Effect of Scapulothoracic Joint Movement and Resistance Training Intensity on Shoulder Complex Muscle Activation during Bench Press Exercise (벤치 프레스 운동 시 하중에 따른 어깨가슴관절의 움직임이 어깨복합체 근 활성도에 미치는 영향)

  • Kim, Yoon-Hwan;Lee, Ki-Kwang;Lee, Man-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.2
    • /
    • pp.141-148
    • /
    • 2013
  • The purpose of this study was to investigate the scapulothoracic joint movement between different weight bearing contributing to effective bench press exercise. Ten male subjects participated in this study. All subjects were tested on the flat bench press machine which modified weight (50% and 70% of 1RM) and subjects were performed two different conditions(none protraction condition and protraction condition). Weight bar height and vertical velocity, EMG activation was measured using 3D motion capture system and wireless EMG analysis system. As the results, none protraction condition showed that it is more concentrate better pectoralis major muscle activation than protraction condition and middle pectoralis major, anterior deltoid and triceps brachii was significant higher integrated EMG in 70% of 1RM condition. In conclusion, limited scapulothoracic joint movement was more effective activated pectoralis major muscle all the weight through, while we could not find that it was not affected integrated EMG on eight muslces related to shoulder complex between scapulothracic joint movement conditions.

Simulation of cyclic response of precast concrete beam-column joints

  • Adibi, Mahdi;Talebkhah, Roozbeh;Yahyaabadi, Aliakbar
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Experience of previous earthquakes shows that a considerable portion of concrete precast buildings sustain relatively large damages especially at the beam-column joints where the damages are mostly caused by bar slippage. Precast concrete buildings have a kind of discontinuity in their beam-column joints, so reinforcement details in this area is too important and have a significant effect on the seismic behavior of these structures. In this study, a relatively simple and efficient nonlinear model is proposed to simulate pre- and post-elastic behavior of the joints in usual practice of precast concrete building. In this model, beam and column components are represented by linear elastic elements, dimensions of the joint panel are defined by rigid elements, and effect of slip is taken into account by a nonlinear rotational spring at the end of the beam. The proposed method is validated by experimental results for both internal and external joints. In addition, the seismic behavior of the precast building damaged during Bojnord earthquake 13 May 2017, is investigated by using the proposed model for the beam-column joints. Damage unexpectedly inducing the precast building in the moderate Bojnord earthquake may confirm that bearing capacity of the precast building was underestimated without consideration of joint behavior effect.

Experimental study on hollow GFRP-confined reinforced concrete columns under eccentric loading

  • B.L. Chen;H.Y. Gao;L.G. Wang
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.451-460
    • /
    • 2024
  • Hollow reinforced concrete columns confined with GFRP tubes (GRCH) are composite members composed of the outer GFRP tube, the PVC or other plastic tube as the inner tube, and the reinforced concrete between two tubes. Because of their high ductility, light weight, corrosion resistance and convenient construction, many researchers pay attention to the composite members. However, there are few studies on GRCH members under eccentric compression compared with those under axial compression. Eight hollow columns were tested under eccentric compression, including one axial compression column and seven eccentric compression columns. The failure modes and force mechanisms of GRCH members were analyzed, considering the varying in hollow ratio, reinforcement ratio and eccentricity. The test results showed that configuring steel bars can greatly increase the bearing capacity and ductility of the members. Each component (GFRP tube, concrete, steel bar) had good deformation coordination and the strength of each material could be fully utilized. But for specimens with larger eccentricity ratio (er=0.4) and larger hollow ratio (χ=0.55), the restraining effect of GFRP tube on concrete was significantly decreased.

Stable isotope, Fluid Inclusion and Mineralogical Studies of the Samkwang Gold-Silver Deposits, Republic of Korea (삼광 금-은광상의 산출광물, 유체포유물 및 안정동위원소 연구)

  • 유봉철;이현구;최선규
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.299-316
    • /
    • 2002
  • The Samkwang gold-silver deposits consist of gold-silver-bearing hydrothermal massive quartz veins which filled the fractures along fault shear (NE, NW) zones within Precambrian banded or granitic gneiss of Gyeonggi massif. Ore mineralization of this deposits occurred within a single stage of quartz vein which was formed by multiple episodes of fracturing and healing. Based on vein mineralogy and paragenesis, massive quartz veins are divided into two main paragenetic stages which are separated by a major faulting event. Main ore mineralization occurred at stage I. Wall-rock alteration from this deposits occur as mainly sericitization, chloritization, silicification and minor amounts of pyritization, carbonitization, propylitization and argillitization. Ore minerals are composed mainly of arsenopyrite (29.21-32.24 As atomic %), pyrite, sphalerite (6.45-13.82 FeS mole %), chalcopyrite, galena with minor amounts of pyrrhotite, marcasite, electmm (39.98-66.82 Au atomic %) and argentite. Systematic studies of fluid inclusions in early quartz veins and microcracks indicate two contrasting physical-chemical conditions: 1). temperature (215-345$^{\circ}$C) and pressure (1296-2022 bar) event with $H_{2}O-CO_{2}-CH_{4}-NaCl$fluids (0.8-6.3 wt. %) related to the early sulfide deposition, 2). temperature (203-441$^{\circ}$C) and pressure (320 bar) event with $H2_{O}$-NaCI $\pm$ $CO_{2}$ fluids (5.7-8.8 wt. %) related to the late sulfide and electrum assemblage. The H20-NaCI $\pm$ $CO_{2}$ fluids represent fluids evolved through fluid unmixing of an $H_{2}O-CO_{2}-CH_{4}-NaCl$fluids due to decreases in fluid pressure and influenced of deepcirculated meteoric waters possibly related to uplift and unloading of the mineralizing suites. Calculated sulfur isotope compositions (${\delta}^{34}S_{fluid}$) of hydrothermal fluids (1.8-4.9$\textperthousand$) indicate that ore sulfur was derived from an igneous source. Measured and calculated oxygen and hydrogen isotope compositions (${\delta}^{18}O_{I120}$, ${\delta}D$) of ore fluids (-5.9~10.9$\textperthousand$, -102~-87$\textperthousand$) indicate that mesothermal auriferous fluids at Samkwang gold-silver deposits were likely mixtures of $H_{2}O$-rich, isotopically less evolved meteoric water and magmatic fluids.

Fluid Inclusion and Stable Isotope Geochemistry of the Yugeum Hydrothermal Gold Deposit in Youngduk, Korea (영덕 유금 열수 금광상에 대한 유체포유물과 안정동위원소 연구)

  • Kim, Sang-Woo;Lee, In-Sung;Shin, Dong-Bok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • The Yugeum deposit in Youngduk in Gyungsangbuk-do is emplaced in the Cretaceous granitoids located in the Northeastem Gyeongsang Basin. Gold-bearing quartz veins filling the fracture with a direction of $N19^{\circ}{\sim}38^{\circ}W$ are most abundantly distributed within the Younghae granodiorite body. The formation of quartz veins can be classified into three main stages: barren quartz stage, auriferous quartz vein stage, and finally the extensive sulfide mineralization stage. Various sulfide minerals such as pyrite, chalcopyrite, galena, sphalerite, and arsenopyrite were precipitated during the hydrothermal gold mineralization process. Gold commonly occurs as fine-grained electrum in sulfides with high Au concentration (up to 93 wt%) compared to Ag. During the early gold mineralization stage, the temperature and pressure of the fluids are in the range of $220{\sim}250^{\circ}C$ and 730~1800 bar, and the oxygen fugacity is between $10^{-27}$ and $10^{-31.7}$ atm. On the other hand, the fluids of the late stage mineralization are characterized by temperature of $290{\sim}350^{\circ}C$ and pressure of 206~472 bar, and the oxygen fugacity is in the range of $10^{-26.3}{\sim}10^{-28.6}$ atm. The sulfur isotope compositions of sulfide minerals are in the range of $0.2{\sim}4.2^{\circ}/_{\circ\circ}$, while the ${\delta}^{34}SH_2S$ values range from 1.0 to $3.7^{\circ}/_{\circ\circ}$. The Ag/Au atomic ratios of electrum ranges from 0.15 to 1.10, and Au content is higher than Ag in most electrum. During the main gold mineralization stage at the relatively high temperature condition and with pH from 4.5 to 5.5, the stability of ${AuCl_2}^-$ increased while the stability of ${Au(HS)_2}^-$ decreased. Considering the pressure estimated in this deposit, the temperature of the ore fluid reached higher than $350^{\circ}C$ and ${AuCl_2}^-$ became an important species for the gold transportation. As mineralization proceeded with decreasing temperature and increasing pH and $f_{o2}$, the precipitation of sulfide minerals and accompanying electrum occurred.

An Experimental Study on the Flexural Strength of Lap Spliced Ultra High Strength Fiber Reinforced Concrete Beams (이음된 초고강도 강섬유보강콘크리트 보의 휨강도에 관한 실험적 연구)

  • Bae, Baek-Il;Son, Dong-Hee;Choi, Hyun-Ki;Jung, Hyung-Suk;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.76-83
    • /
    • 2021
  • This study examines the bending behavior of lap-spliced ultra-high-strength fiber-reinforced concrete members and evaluates the safety of the design codes for ultra-high-strength fiber-reinforced concrete structures. An experiment on a total of six beams was performed. The main variables were the fiber-inclusion and the lap-spliced length at the center of the beams. The steel fibers in a volume fraction of 2% were used, and the lap-splice lengths were determined to be 8db and 16db. As a result of the test, the specimens not reinforced with fiber lost abrupt load-bearing capacity at the lap region and did not experience yielding of the reinforcing bar. In the case of fiber-reinforced concrete, if a lap-splice length of 16db is secured, the yielding of the main reinforcing bar can be experienced, and appropriate flexural strength can be expressed. Based on the experimental results of this study, as a result of reviewing the lap-splice length calculation formulas of the current design standards and the ultra-high-strength concrete structural design recommendations, it was found that all of them were evaluated conservatively.

Evaluation of Bearing Capacity of Waveform Micropile by Numerical Analyses (수치해석을 이용한 파형 마이크로파일의 지지거동 분석)

  • Han, Jin-Tae;Kim, Sung-Ryul;Jang, Young-Eun;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5906-5914
    • /
    • 2013
  • Recently in Korea, the policy is being proceeded to build a intergenerational housing on artificial ground of railroad site for utilizing rental house. Due to narrow space of rail road site, suitable method have to be developed such as micropiles which is known as a method of a fast construction. However, If micropile is used as foundations for the super structure, construction cost is increases compared with other pile. Consequently, new concept micropile proposed to improve both bearing capacity and cost efficiency of general micropile. New concept micropile consists of waveform cement grout surrounding tread bar that formed by grouting the soil layer with jet grouting method as control the grout pressure and flow. The micropile with waveform is expected to decrease the construction cost by cut down pile length of general micropile. This paper examined the behavior of the new concept micropile with waveform subjected to axial load using two-dimensional axisymmetric numerical analyses method. According to the numerical result, there will cost effectiveness as the pile displacement decreased despite the length of waveform micropile is down about 5% from a general micropile under the same loading condition. Also, the effect of skin friction force which mobilized from the waveform of micropile appeared at relatively soft ground.

Geochemistry of Cu-Pb-Zn-Ag Deposits from the Euiseong Mineralized Area (의성 광화대 동-연-아연-은 광상의 지화학적 연구)

  • Chi, Se-Jung;Doh, Seong-Jae;Choi, Seon-Gyu;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.253-266
    • /
    • 1989
  • The Cu-Pb-Zn-Ag hydrothermal vein type deposits which comprise the Dongil and Dong-cheogogsan mines occur within the Cretaceous sedimentary rocks in the Euiseong Basin of the southern Korean peninsula. The ore mineralization is contained within three stage(I,II and III) quartz and calcite veins. Ore minerals occur as dominant chalcopyrite, galena, sphalerite, tetrahedrite and Pb, Ag, Sb and Bi-bearing sulfosalts. Stage I ore minerals were deposited between $400^{\circ}C$ and $200^{\circ}C$ from the fluid with moderate salinities(7.0 to 4.5 eq. wt. % NaCl). Evidence of boiling suggests pressure of less than 150 bars during stage I mineralization. This pressure corresponds to maximum depths of 650 m and 1700 m, respectively, assuming lithostatic and hydrostatic loads. The data on mineralogy, temperature and salinity, together with information on the solubility of Cu complex, suggest that Cu deposition is a result of boiling coupled with declining temperature from $350^{\circ}$ to $250^{\circ}C$ or declining log $a_{o_2}$(from -29.8 to -35.9 atm.)and increasing in pH. Pb, Ag, Sb and Bi-bearing sulfosalts were deposited by cooling and dilution at temperature of less than $250^{\circ}C$ from the ore fluid with less than -35.9 atm. of log $a_{o_2}$.

  • PDF

Lead-Zinc-Tin-Silver Mineralization of Tangguanpu Mine, Hunan Province, China: Fluid Inclusion and Sulfur Isotope Studies (중국 호남성 당관포 광산의 연-아연-주석-은 광화작용: 유체포유물 및 황동위원소 연구)

  • 허철호;윤성택;소칠섭
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.157-166
    • /
    • 2001
  • Numerous base-metal bearing hydrothermal quartz vein deposits occur in the Hunan province of southern China. The Tangguanpu lead-zinc-tin-silver mine is the major producer among these deposits. Lead-zinc-tin-silver mineralization occurs in a single stage of massive quartz veins which filled fractures in fault zones within Paleozoic metasedimentary rocks. Sphalerite, chalcopyrite, galena, pyrite, arsenopyrite and pyrrhotite are the principal sulphide minerals in the Tangguanpu lead-zinc ores with minor amounts of tin- and antimony-bearing sulphides (stannite, teallite, boulangerite and tetrahedrite). Based on the iron and zinc partitioning between coexisting stannite and sphalerite, the formation temperature for this mineral assemblage range from 300$^{\circ}$ to 330$^{\circ}$C, which relatively agree with the upper part of homogenization temperature of fluid inclusion in quartz (20T-358$^{\circ}$C). Fluid inclusion data show that main lead-zine-tin-silver mineralization occurred from $H_{2}O$-NaCl fluids with relatively low salinities (11.2-7.3 wl.% eg. NaCI) at temperatures between 207$^{\circ}$ and 358$^{\circ}$C. The relationship between homogenization temperature and salinity suggests a history of cooling and dilution followed by initial boiling. Evidence of initial fluid boiling may indicate the fluid trapping pressures of 180 bars. The ${\delta}^{34}S{{\Sigma}S}$ values of -5.0 to 1.1 %, indicate an igneous source of sulfur in the Tangguanpu lead-zinc-tin-silver hydrothermal fluids.

  • PDF

Influence of Transverse Reinforcement Elements for Flexural Strength of Lap Spliced Ultra-high-strength Reinforced Concrete Beams (겹침이음된 초고강도콘크리트 보의 휨강도에 횡방향보강 요소가 미치는 영향)

  • Bae, Baek-Il;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • In this study, lap spliced ultra-high strength reinforced concrete beams were tested and the code criteria for calculating the lap splice length which was affected by the transverse reinforcement and concrete covering performance were reviewed. The main variables for test were set as fiber volume fraction and transverse reinforcing bar arrangement to improve the confining performance of the concrete cover. The change of the confining performance of concrete cover according to the increase in the fiber mixing amount at 1% and 2% volume ratio was examined, and D10 stirrups with a spacing of 100 mm were placed in the lap spliced region. As a result of the test, the specimens confined by the stirrups showed a sudden drop of load bearing capacity with horizontal cracking at the position of tensile longitudinal reinforcement. However, horizontal cracks were not appeared at the location of longitudinal reinforcement for the specimens with steel fiber. And these specimens showed gradual decrease of load bearing capacity after experiencing peak load. In particular, it was found that the strain at the position of the tensile longitudinal reinforcements of the specimens to which the mixing ratio of 2% was applied exceeds the yield strain. As a result of measuring the strain on the concrete surface, it was found that the fiber was more effective in preventing damage to the concrete surface than the stirrups for short lap spliced region.