• Title/Summary/Keyword: Bearing Accuracy

Search Result 307, Processing Time 0.024 seconds

Upper Bound Limit Analysis of Bearing Capacity for Surface Foundations on Sand Overlying Clay (점토층위의 모래지반에 위치한 얕은 기초의 지지력에 대한 상한 한계해석)

  • 김대현;야마모토켄타로
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.85-96
    • /
    • 2004
  • The ultimate bearing capacity of surface foundations on a sand layer overlying clay has been theoretically investigated. First, a review of previous studies on the bearing capacity problems for this type of foundation was performed and a discussion was presented concerning the practical application. Second, the kinematic approach of limit analysis was used to calculate the upper bound of the true ultimate bearing capacity. The kinematic solutions are upper bounds and their accuracy depends primarily on the nature of the assumed failure mechanism. This approach makes it convenient to create design charts, and it is possible to trace the influence of parameters. Third, the commercial finite element program ABAQUS was applied to obtain the ultimate bearing capacity based on the elasto-plastic theory. Results obtained from the kinematic approach were compared with those from the program ABAQUS and the limit equilibrium equations proposed by Yamaguchi, Meyerhof and Okamura et al. Finally, the validities of the results from the kinematic approach, the results from the program ABAQUS and the limit equilibrium equations were examined.

Estimation of Ultimate Bearing Capacity of SCP and GCP Reinforced Clay for Laboratory Load Test Data (SCP 및 GCP 개량 점성토지반의 실내재하시험에 대한 극한지지력 산정 방법 개발)

  • Bong, Tae-Ho;Kim, Byoung-Il;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.37-47
    • /
    • 2018
  • In this study, 34 laboratory load test data were collected, and analyzed to propose the equations for predicting ultimate bearing capacity of sand compaction pile (SCP) and gravel compaction pile (GCP) reinforced clay. The collected data were compared with the ultimate bearing capacity estimated by existing theoretical equations, and the prediction accuracy of the existing theoretical equations was identified. Also, multiple regression analysis was performed to predict the ultimate bearing capacity, and the most efficient number and type of input variables were selected through error evaluation by leave-one-out cross validation. Finally, the multiple regression equations for estimating the ultimate bearing capacity of laboratory load test for SCP and GCP were proposed, and their performance was evaluated.

The bearing capacity of monolithic composite beams with laminated slab throughout fire process

  • Lyu, Junli;Zhou, Shengnan;Chen, Qichao;Wang, Yong
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.87-102
    • /
    • 2021
  • To investigate the failure form, bending stiffness, and residual bearing capacity of monolithic composite beams with laminated slab throughout the fire process, fire tests of four monolithic composite beams with laminated slab were performed under constant load and temperature increase. Different factors such as post-pouring layer thickness, lap length of the prefabricated bottom slab, and stud spacing were considered in the fire test. The test results demonstrate that, under the same fire time and external load, the post-pouring layer thickness and stud spacing are important parameters that affect the fire resistance of monolithic composite beams with laminated slab. Similarly, the post-pouring layer thickness and stud spacing are the predominant factors affecting the bending stiffness of monolithic composite beams with laminated slab after fire exposure. The failure forms of monolithic composite beams with laminated slab after the fire are approximately the same as those at room temperature. In both cases, the beams underwent bending failure. However, after exposure to the high-temperature fire, cracks appeared earlier in the monolithic composite beams with laminated slab, and both the residual bearing capacity and bending stiffness were reduced by varying degrees. In this test, the bending bearing capacity and ductility of monolithic composite beams with laminated slab after fire exposure were reduced by 23.3% and 55.4%, respectively, compared with those tested at room temperature. Calculation methods for the residual bearing capacity and bending stiffness of monolithic composite beams with laminated slab in and after the fire are proposed, which demonstrated good accuracy.

A Study on the Machining Accuracy according to Vibration and Unbalance Decrease in Rotational Speed Domains of High Precision Machine Tools (정밀 공작기계의 회전 영역별 진동 및 불평형량 감소에 따른 가공 정밀도 영향에 관한 연구)

  • Son, Deok-Soo;Kim, Sang-Hwa;Park, Il-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.121-126
    • /
    • 2013
  • Precision machine tools for high dignity cutting are needed for efforts to improve machining accuracy. However, there are many factors to improve machining accuracy. This study investigated how machining accuracy changes when variation and unbalance amount in rotational speed domain is decreased. Machining accuracy of initial machine tools depends on manufacturing and assembly of parts such as bearing. And then, vibration and noise vary with volume of unbalance amount when it is rotation, so it effects unbalance amount. Also vibration and noise increased by unbalance shorten spindle's life and it especially makes worse boring accuracy. Therefore, this study studied the change of roundness and cylindricity of workpiece when it decreases variation and unbalance in rotational speed domain.

A Study on the Monitoring of VOR (VOR 전파 감시방안에 관한 연구)

  • Moon, Jeong-Il;Park, Dong-Young;Kim, Baek-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.303-312
    • /
    • 2010
  • VHF Omnidirectional Radio range(VOR) is used as an aircraft navigational aid. The VOR is a short-range air navigation system providing aircraft with its bearing relative to the ground station. The accuracy of a VOR must be checked in accordance with the current ICAO, FAA and domestic regulations. The primary purpose of performing VOR station ground checks is to minimize the need for expensive flight checks by determining the amount and direction of any course bearing inaccuracies being transmitted. In this paper we present current and advanced way of monitoring of VOR system. We verify this way by field test of the monitoring and it is a high performance way to achieve an improvement in accuracy and an effect compared to present monitoring system.

Rotating Accuracy Analysis for Spindle with Angular Contact Ball Bearings (각 접촉 볼베어링 스핀들의 회전정밀도 분석)

  • Hwang, Jooho;Kim, Jung-Hwan;Shim, Jongyoup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.735-739
    • /
    • 2013
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. Spindle motion errors such as three translational motions and two rotational motions are undesirable. These are usually due to the imperfectness of bearings, stiffness of spindle, assembly errors, and external force or unbalance of rotors. The error motions of the spindle need to be reduced for achieving the desired performance. Therefore, the level of error motion needs to be estimated during the design and assembly process of the spindle. In this study, an estimation method for five degree-of-freedom (5 DOF) error motions for a spindle with an angular contact ball bearing is suggested. To estimate the error motions of the spindle, the waviness of the inner-race of bearings and an external force model were used as input data. The estimation model considers the geometric relationship and force equilibrium of the five DOFs. To calculate the error motions of the spindle, not only the imperfections of the shaft and bearings but also driving elements such as belt pulley and direct driving motor systems are considered.

A Study on 2-Dimensional Sound Source Tracking System III - mainly on digital signal processing - (2차원적 음원추적에 관한 연구III - 디지털 신호처리를 중심으로 -)

  • 문성배;전승환
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.5
    • /
    • pp.443-450
    • /
    • 2000
  • Before some experiments were carried out with analog bandpass filter which used for filtering the noise included in sound source signal. And this filter was constituted by condenser, register and operational amplifier. Hut these elements made the phase characteristics to differentiate in each sensing channel and cause a little of measurement error. We made new measurement system that was substituted digital filter for the analog filter in order to develop the optimal system which could find the time delay between each sensors with high accuracy. This paper describes the new system's constitution and the function of each parts. Specially three digital filters were designed and applied to the digital signal processing Part. And a series of experiments were carried out with the source's distance 9.53meters and the random bearing interval within the limits of $0^{\circ}$ ~ $180^{\circ}$. As a result, we have recognized that the accuracy of measurements were differentiated by the methods what kind of digital filter were adopted. And we have confirmed the facts that IIR LPF was suitable for sound source's bearing measurement and FIR LPF reduced the range measurement error.

  • PDF

Development of the Optimized Angle Head for Internal Shape Machining Using Five-Axis Machine Tool (5축가공기를 활용한 내면 형상 가공용 최적 앵글헤드의 개발)

  • Hwang, Jong-Dae;Kim, Jae-Hyun;Cho, Young-Tae;Jung, Yoon-Gyo;Ko, Hae-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.123-129
    • /
    • 2015
  • In general, recent critical studies of five-axis machine have tended to center on the question of effective machining to realize complex shape parts. However, the hydrostatic bearing and journal bearing, both of which are involved in the complex process of dividing the processing of internal precision-shape machining, must be optimized. Although the angle head is designed to machine the internal shape as it approaches the inner diameter of the work piece, research on the angle head in five-axis machining has received only minimal attention in domestic industries. In this study, an angle head which is optimized for effective internal shape machining is developed. In pursuit of this purpose, 3D and 2D designs of the angle head for five-axis machining are devised. Reliability is secured through static performance tests and machining accuracy evaluations of the angle head in keeping with the machining accuracy standard of 0.2mm for hydrostatic bearings.

Experimental Verification on the Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Bearing Tables

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Husang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.62-68
    • /
    • 2004
  • Effectiveness of a corrective machining algorithm, which can construct the proper machining information to improve motion errors utilizing measured motion errors, is verified experimentally in this paper, Corrective machining process is practically applied to single and double side hydrostatic bearing tables. Lapping process is applied as a machining method. The machining information is obtained from the measured motion errors by applying the algorithm, without any information on the rail profile. In the case of the single-side table, after 3 times of corrective remachining, linear and angular motion errors are improved up to 0.13 $\mu\textrm{m}$ and 1.40 arcsec from initial error of 1.04 $\mu\textrm{m}$ and 22.71 arcsec, respectively. In the case of the double-side table, linear and angular motion error are improved up to 0.07 /$\mu\textrm{m}$ and 1.42 arcsec from the initial error of 0.32 $\mu\textrm{m}$ and 4.14 arcsec. The practical machining process is performed by an unskilled person after he received a preliminary training in machining. Experimental results show that the corrective machining algorithm is very effective and easy to use to improve the accuracy of hydrostatic tables.

Development of Magnetic Bearing Controller with High Magnetic Levitation Accuracy (높은 자기부상 정밀도를 갖는 자기베어링 제어기 개발)

  • Lee, Seokwon;Huh, Heon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.225-229
    • /
    • 2019
  • Magnetic bearings are widely used in vacuum and clean environments or in high-precision applications, because they have no mechanical friction and have stable dynamic characteristics. Despite the aforementioned advantages of magnetic bearings, their applications are generally limited due to the controller complexity. In this paper, we proposed a reduced-complexity digital controller for magnetic bearings. In addition, we analyzed and solved the problems, such as quantization errors in the analog-to-digital conversion and integral windup in a feedback controller, which are known as the main causes of performance degradation. Experiments showed that the proposed digital controller achieves a target magnetic levitation accuracy.