• 제목/요약/키워드: Beams to columns joint

검색결과 77건 처리시간 0.019초

정(井)자형 H형강으로 구속된 철근콘크리트 기둥접합부의 뚫림전단에 관한 실험적 연구 (An Experimental Study on Punching Shear at the Connection of RC Column Constrained by H-Beam with 井 Shape)

  • 김량운;이수권;이정윤;정창용;김상식
    • 콘크리트학회논문집
    • /
    • 제21권3호
    • /
    • pp.319-326
    • /
    • 2009
  • 정(井)자형 H형강을 강축의 수직 방향에 대해 띠판으로 연결한 조립보를 수평버팀대로 사용하면 구조적으로 약축 방향의 세장비를 줄여 구조 효율을 높일 수 있으며 또한 이를 구조물 지하 골조의 일부로 사용하여 시공성을 개선시킬 수 있다. 이 시스템의 H형강이 서로 만나는 교차 부분에는 콘크리트가 채워지고 그 사각형 가운데는 철근콘크리트 기둥이 위치하게 된다. 보-기둥 접합부의 뚫림 전단거동은, 사변을 구속하고 있는 H형강에 의해 전단균열에 의한 방사변형이 구속되어지며, H형강이 접합부를 충분히 구속할 수 있는 경우 하중 전달이 효과적으로 이루어지고, 일반적인 경우의 뚫림 전단강도보다는 더 큰 내력을 가지게 된다. 이 현상을 확인하기 위하여 구속 여부와 기둥면에서 구속 H형강까지의 거리를 변수로 하여 실험하였다. 실험 결과는 콘크리트구조설계기준을 준용하여 얻은 식과 비교하였고, 제안된 식을 통하여 계산된 결과는 실험을 통해 얻은 뚫림 전단강도와 비슷한 결과를 나타냈다.

조선시대 다포계 건축물의 결구형태별 구조성능 평가 (Structural Performance of Beam-to-Column Joint Types in Dapo-style Buildings of the Joseon Dynasty)

  • 윤정훈;최윤철;이은진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권4호
    • /
    • pp.8-14
    • /
    • 2019
  • 한국 전통 목조 건축물의 경우 구조적 성능은 재료 특성, 접합부의 형태, 치목의 정밀도 등에 따라 다르게 나타난다. 기존 사례 연구에서도 보와 기둥 접합부 형태는 변형 및 간격의 정도에 큰 영향을 미친다는 것을 보고하고 있다. 이는 단층 건물뿐만 아니라 대규모 다층 건물의 경우에도 마찬가지로 나타나고 있다. 따라서 본 연구에서는 접합부 형태에 대해 분석하고 모형을 제작하고 구조적 성능을 테스트하는 과정을 거쳤다. 그 결과, 주먹장맞춤의 실험체에서 최대 하중을 나타냈다. 각각의 형태의 접합부에 의한 구조적 성능을 종합하면, 도래걷이 주먹장맞춤이 가장 높은 성능을 나타내었으며, 다음으로 도래걷이 장부맞춤의 순으로 나타났다. 건물의 구조적 성능은 관통하는 보의 치목 형태와 기둥 내부의 접합부 형테에 따라 다르게 나타남을 알 수 있었으며, 이는 다층 건물의 신축 또는 복원을 위해 고려되어야하며 이후 계속 연구되어야 할것으로 사료된다.

Seismic performance of self-sustaining precast wide beam-column connections for fast construction

  • Wei Zhang;Seonhoon Kim;Deuckhang Lee;Dichuan Zhang;Jong Kim
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.339-349
    • /
    • 2023
  • Fast-built construction is a key feature for successful applications of precast concrete (PC) moment frame system in recent construction practices. To this end, by introducing some unique splicing details in precast connections, especially between PC columns including panel zones, use of temporary supports and bracings can be minimized based on their self-sustaining nature. In addition, precast wide beams are commonly adopted for better economic feasibility. In this study, three self-sustaining precast concrete (PC) wide beam-column connection specimens were fabricated and tested under reversed cyclic loadings, and their seismic performances were quantitatively evaluated in terms of strength, ductility, failure modes, energy dissipation and stiffness degradation. Test results were compared with ASCE 41-17 nonlinear modeling curves and its corresponding acceptance criteria. On this basis, an improved macro modeling method was explored for a more accurate simulation. It appeared that all the test specimens fully satisfy the acceptance criteria, but the implicit joint model recommended in ASCE 41-17 tends to underestimate the joint shear stiffness of PC wide beam-column connection. While, the explicit joint model along with concentrated plastic hinge modeling technique is able to present better accuracy in simulating the cyclic responses of PC wide beam-column connections.

Improvement of the earthquake resistance of R/C beam-column joints under the influence of P-△ effect and axial force variations using inclined bars

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.389-410
    • /
    • 2004
  • In this study, theoretical and experimental results are presented which were obtained during an investigation of the influence of the $P-{\Delta}$ effect that was caused by the simultaneous changing of the axial load P of the column and the lateral displacement ${\Delta}$ in the external beam-column joints. The increase or decrease of ${\Delta}$ was simultaneous with the increase or decrease of the axial compression load P and caused an additional influence on the aseismic mechanical properties of the joint. A total of 12 reinforced concrete exterior beam-column subassemblies were examined. A new model, which predicts the beam-column joint ultimate shear strength, was used in order to predict the seismic behaviour of beam-column joints subjected to earthquake-type loading plus variable axial load and $P-{\Delta}$ effect. Test data and analytical research demonstrated that axial load changes and $P-{\Delta}$ effect during an earthquake cause significant deterioration in the earthquake-resistance of these structural elements. It was demonstrated that inclined bars in the joint region were effective for reducing the unfavourable impact of the $P-{\Delta}$ effect and axial load changes in these structural elements.

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.

Study on seismic performance of connection joint between prefabricated prestressed concrete beams and high strength reinforcement-confined concrete columns

  • Jiang, Haotian;Li, Qingning;Jiang, Weishan;Zhang, De-Yi
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.343-356
    • /
    • 2016
  • As the common cast-in-place construction works fails to meet the enormous construction demand under rapid economic growth, the development of prefabricated structure instead becomes increasingly promising in China. For the prefabricated structure, its load carrying connection joint play a key role in maintaining the structural integrity. Therefore, a novel end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column was proposed. Under action of low cycle repeated horizontal loadings, comparative tests are conducted on 6 prefabricated pre-stressed intermediate joint specimens and 1 cast-in-place joint specimen to obtain the specimen failure modes, hysteresis curves, skeleton curves, ductility factor, stiffness degradation and energy dissipation capacity and other seismic indicators, and the seismic characteristics of the new-type prefabricated beam-column connecting joint are determined. The test results show that all the specimens for end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column have realized the design objectives of strong column weak beam. The hysteretic curves for specimens are good, indicating desirable ductility and energy dissipation capacity and seismic performances, and the research results provide theoretical basis and technical support for the promotion and application of prefabricated assembly frames in the earthquake zone.

Nonlinear modeling of beam-column joints in forensic analysis of concrete buildings

  • Nirmala Suwal;Serhan Guner
    • Computers and Concrete
    • /
    • 제31권5호
    • /
    • pp.419-432
    • /
    • 2023
  • Beam-column joints are a critical component of reinforced concrete frame structures. They are responsible for transferring forces between adjoining beams and columns while limiting story drifts and maintaining structural integrity. During severe loading, beam-column joints deform significantly, affecting, and sometimes governing, the overall response of frame structures. While most failure modes for beam and column elements are commonly considered in plastic-hinge-based global frame analyses, the beam-column joint failure modes, such as concrete shear and reinforcement bond slip, are frequently omitted. One reason for this is the dearth of published guidance on what type of hinges to use, how to derive the joint hinge properties, and where to place these hinges. Many beam-column joint models are available in literature but their adoption by practicing structural engineers has been limited due to their complex nature and lack of practical application tools. The objective of this study is to provide a comparative review of the available beam-column joint models and present a practical joint modeling approach for integration into commonly used global frame analysis software. The presented modeling approach uses rotational spring models and is capable of modeling both interior and exterior joints with or without transverse reinforcement. A spreadsheet tool is also developed to execute the mathematical calculations and derive the shear stress-strain and moment-rotation curves ready for inputting into the global frame analysis. The application of the approach is presented by modeling a beam column joint specimen which was tested experimentally. Important modeling considerations are also presented to assist practitioners in properly modeling beam-column joints in frame analyses.

PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가 (Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections)

  • 김재영;김용남;서민정;김범진;김승직;이기학
    • 한국지진공학회논문집
    • /
    • 제28권3호
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Seismic repair of reinforced concrete beam-column subassemblages of modern structures by epoxy injection technique

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제14권5호
    • /
    • pp.543-563
    • /
    • 2002
  • The use of the epoxy pressure injection technique to rehabilitate reinforced concrete beam-column joints damaged by strong earthquakes is investigated experimentally and analytically. Two one-half-scale exterior beam-column joint specimens were exposed to reverse cyclic loading similar to that generated from strong earthquake ground motion, resulting in damage. Both specimens were typical of new structures and incorporated full seismic details in current building codes. Thus the first specimen was designed according to Eurocode 2 and Eurocode 8 and the second specimen was designed according to ACI-318 (1995) and ACI-ASCE Committee 352 (1985). The specimens were then repaired with an epoxy pressure injection technique. The repaired specimens were subjected to the same displacement history as that imposed on the original specimens. The results indicate that the epoxy pressure injection technique was effective in restoring the strength, stiffness and energy dissipation capacity of specimens representing a modem design.

Seismic repair of exterior R/C beam-to-column joints using two-sided and three-sided jackets

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.17-34
    • /
    • 2002
  • The use of local two-sided and three-sided jacketing for the repair and strengthening of reinforced concrete beam-column joints damaged by severe earthquakes is investigated experimentally and analytically. Two exterior beam-column joint specimens ($O_1$ and $O_2$) were submitted to a series of cyclic lateral loads to simulate severe earthquake damage. The specimens were typical of existing older structures built in the 1960s and 1970s. The specimens were then repaired and strengthened by local two-sided or three-sided jacketing according to UNIDO Manual guidelines. The strengthened specimens ($RO_1$ and $RO_2$) were then subjected to the same displacement history as that imposed on the original specimens. The repaired and strengthened specimens exhibited significantly higher strength, stiffness and better energy dissipation capacity than the original specimens.