• 제목/요약/키워드: Beam-coupling

검색결과 494건 처리시간 0.029초

비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석 (Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis)

  • 김성현;모상영;김시현;최경규;강수민
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.

연결보에 감쇠장치를 적용한 전단벽식 구조물의 거동특성 (Behaviour of Shear Wall Structures with Energy Dissipation Device in Coupling Beam)

  • 김진상;윤태호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권3호
    • /
    • pp.21-30
    • /
    • 2018
  • 국내 공동주택 전단벽 구조시스템에 적용되는 감쇠장치는 대부분 인방형 형상으로 적용되고 있다. 인방형 감쇠장치는 좌우 전단벽을 연결하여 커플링 효과 및 추가 감쇠효과를 발휘하여 구조물 내진성능을 증대시킨다. 본 연구에서는 인방형 감쇠장치를 소개하고 감쇠장치가 적용된 구조물의 거동특성을 파악하였다. 제안된 감쇠장치는 힌지 및 변단면 형상으로 감쇠효과를 극대화시킨 구조로 유한요소 해석결과와 실험결과가 잘 일치하여 우수한 내진성능을 발휘하는 것으로 나타났으며, 해당 감쇠장치가 적용된 2차원 및 실제 공동주택 구조물을 대상으로 감쇠효과를 검토한 결과, 감쇠장치 커플링 효과로 기존구조물 대비 모든 구조물에서 내진성능 향상을 도모할 수 있었다. 본 연구에서 검토한 실제 구조물에 대해서는 비선형 정적해석 결과, 강도 및 연성능력이 향상되는 것으로 나타났고, 비선형 동적해석 결과, 층간변형각이 15%~18%, 층가속도가 20%~28%, 밑면전단력이 15%~20% 감소하는 결과를 나타냈다.

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF

Challenges in Structural Design of Bumeo W-project

  • Kim, Jong Soo;Jo, Duck Won;Choi, Eun Gyu
    • 국제초고층학회논문집
    • /
    • 제9권2호
    • /
    • pp.167-173
    • /
    • 2020
  • W-Project is 60-story mixed-use residential building complex project in Daegu, the third biggest city in South Korea. There are lots explorable items to be solved to secure structural safety and meet the serviceability requirements. This paper describes what kind of structural system is optimized based on the architectural requirements and structural components design and the grade of concrete strength altered on floors. The defining process of lateral resisting system of outrigger compared to the core ratio of typical plan is illustrated in detail.

Design of a Wideband Antipodal Vivaldi Antenna with an Asymmetric Parasitic Patch

  • Bang, Jihoon;Lee, Juneseok;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • 제18권1호
    • /
    • pp.29-34
    • /
    • 2018
  • An antipodal Vivaldi antenna with a compact parasitic patch to overcome radiation performance degradations in the high-frequency band is proposed. For this purpose, a double asymmetric trapezoidal parasitic patch is designed and added to the aperture of an antipodal Vivaldi antenna. The patch is designed to efficiently focus the beam toward the end-fire direction at high frequencies by utilizing field coupling between the main radiating patch and the inserted parasitic patch. As a result, this technique considerably improves the gain and stability of radiation patterns at high frequencies. The proposed antenna has a peak gain greater than 9 dBi over the frequency range of 6-26.5 GHz.

Determination of the Principal Directions of Composite Helicopter Rotor Blades with Arbitrary Cross Sections

  • Oh, Taek-Yul;Choi, Myung-Jin;Yu, Yong-Seok;Chae, Kyung-Duck
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.291-297
    • /
    • 2000
  • Modern helicopter rotor blades with non-homogeneous cross sections, composed of anisotropic material, require highly sophisticated structural analysis because of various cross sectional geometry and material properties. They may be subjected by the combined axial, bending, and torsional loading, and the dynamic and static behaviors of rotor blades are seriously influenced by the structural coupling under rotating condition. To simplify the analysis procedure using one dimensional beam model, it is necessary to determine the principal coordinate of the rotor blade. In this study, a method for the determination of the principal coordinate including elastic and shear centers is presented, based upon continuum mechanics. The scheme is verified by comparing the results with confirmed experimental results.

  • PDF

In-plane Vibration Analysis of Rotating Cantilever Curved Beams

  • Zhang, Guang-Hui;Liu, Zhan Sheng;Yoo, Hong-Hee
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1045-1050
    • /
    • 2007
  • Equations of motion of rotating cantilever curved beams are derived based on a dynamic modeling method developed in this paper. The Kane's method is employed to derive the equations of motion. Different from the classical linear modeling method which employs two cylindrical deformation variables, the present modeling method employs a non-cylindrical variable along with a cylindrical variable to describe the elastic deformation. The derived equations (governing the stretching and the bending motions) are coupled but linear. So they can be directly used for the vibration analysis. The coupling effect between the stretching and the bending motions which could not be considered in the conventional modeling method is considered in this modeling method. The natural frequencies of the rotating curved beams versus the rotating speed are calculated for various radii of curvature and hub radius ratios.

  • PDF

Treatment of locking behaviour for displacement-based finite element analysis of composite beams

  • Erkmen, R. Emre;Bradford, Mark A.;Crews, Keith
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.163-180
    • /
    • 2014
  • In the displacement based finite element analysis of composite beams that consist of two Euler-Bernoulli beams juxtaposed with a deformable shear connection, the coupling of the displacement fields may cause oscillations in the interlayer slip field and reduction in optimal convergence rate, known as slip-locking. In this study, the B-bar procedure is proposed to alleviate the locking effects. It is also shown that by changing the primary dependent variables in the mathematical model, to be able to interpolate the interlayer slip field directly, oscillations in the slip field can be completely eliminated. Examples are presented to illustrate the performance and the numerical characteristics of the proposed methods.

Coupled hydroelastic vibrations of a liquid on flexible space structures under zero-gravity - Part I. Mechanical model

  • Chiba, Masakatsu;Chiba, Shinya;Takemura, Kousuke
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.303-327
    • /
    • 2013
  • The coupled free vibration of flexible structures and on-board liquid in zero gravity space was analyzed, considering the spacecraft main body as a rigid mass, the flexible appendages as two elastic beams, and the on-board liquid as a "spring-mass" system. Using the Lagrangians of a rigid mass (spacecraft main body), "spring-mass" (liquid), and two beams (flexible appendages), as well as assuming symmetric motion of the system, we obtained the frequency equations of the coupled system by applying Rayleigh-Ritz method. Solving these frequency equations, which are governed by three system parameters, as an eigenvalue problem, we obtained the coupled natural frequencies and vibration modes. We define the parameter for evaluating the magnitudes of coupled motions of the added mass (liquid) and beam (appendages). It was found that when varying one system parameter, the frequency curves veer, vibration modes exchange, and the significant coupling occurs not in the region closest to the two frequency curves but in the two regions separate from that region.

A transport model for high-frequency vibrational power flows in coupled heterogeneous structures

  • Savin, Eric
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.53-81
    • /
    • 2008
  • The theory of microlocal analysis of hyperbolic partial differential equations shows that the energy density associated to their high-frequency solutions satisfies transport equations, or radiative transfer equations for randomly heterogeneous materials with correlation lengths comparable to the (small) wavelength. The main limitation to the existing developments is the consideration of boundary or interface conditions for the energy and power flow densities. This paper deals with the high-frequency transport regime in coupled heterogeneous structures. An analytical model for the derivation of high-frequency power flow reflection/transmission coefficients at a beam or a plate junction is proposed. These results may be used in subsequent computations to solve numerically the transport equations for coupled systems, including interface conditions. Applications of this research concern the prediction of the transient response of slender structures impacted by acoustic or mechanical shocks.