• Title/Summary/Keyword: Beam-column theory

Search Result 98, Processing Time 0.019 seconds

Nonlinear analyses of structures with added passive devices

  • Tsai, C.S.;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.517-539
    • /
    • 2004
  • Many types of passive control devices have been recognized as effective tools for improving the seismic resistance of structures. A lot of past research has been carried out to study the response of structures equipped with energy-absorbing devices by assuming that the behavior of the beam-column systems are linearly elastic. However, linear theory may not be adequate for beams and columns during severe earthquakes. This paper presents the results of research on the nonlinear responses of structures with and without added passive devices under earthquakes. A new material model based on the plasticity theory and the two-surface model for beams and columns under six components of forces is proposed to predict the nonlinear behavior of beam-column systems. And a new nonlinear beam element in consideration of shear deformation is developed to analyze the beams and columns of a structure. Numerical results reveal that linear assumption may not be appropriate for beams and columns under seismic loadings, especially for unexpectedly large earthquakes. Also, it may be necessary to adopt nonlinear beam elements in the analysis and design process to assure the safety of structures with or without the control of devices.

Vibration behaviour of axially compressed cold-formed steel members

  • Silvestre, N.;Camotim, D.
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.221-236
    • /
    • 2006
  • The objective of this work is to describe the main steps involved in the derivation of a GBT (Generalised Beam Theory) formulation to analyse the vibration behaviour of loaded cold-formed steel members and also to illustrate the application and capabilities of this formulation. In particular, the paper presents and discusses the results of a detailed investigation about the local and global free vibration behaviour of lipped channel simply supported columns. After reporting some relevant earlier GBT-based results dealing with the buckling and vibration behaviours of columns and load-free members, the paper addresses mostly issues concerning the variation of the column fundamental frequency and vibration mode nature/shape with its length and axial compression level. For validation purposes, some GBT-based results are also compared with values obtained by means of 4-node shell finite element analyses performed in the code ABAQUS.

Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns

  • Han, Lin-Hai;Zhao, Xiao-Ling;Tao, Zhong
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.51-74
    • /
    • 2001
  • A series of tests on concrete-filled SHS (Square Hollow Section) stub columns (twenty), columns (eight) and beam-columns (twenty one) were carried out. The main parameters varied in the tests are (1) Confinement factor (${\xi}$) from 1.08 to 5.64, (2) concrete compression strength from 10.7MPa to 36.6MPa, (3) tube width to thickness ratio from 20.5 to 36.5. (4) load eccentricity (e) from 15 mm to 80 mm and (5) column slenderness (${\lambda}$) from 45 to 75. A mechanics model is developed in this paper for concrete-filled SHS stub columns, columns and beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and filled concrete. The predicted load versus axial strain relationship is in good agreement with stub column test results. Simplified models are derived for section capacities and modulus in different stages of the composite sections. The predicted beam-column strength is compared with that of 331 beam-column tests with a wide range of parameters. A good agreement is obtained. The predicted load versus midspan deflection relationship for beam-columns is in good agreement with test results. A simplified model is developed for calculating the member capacity of concrete-filled SHS columns. Comparisons are made with predicted columns strengths using the existing codes such as LRFD (AISC 1994), AIJ (1997), and EC4 (1996). Simplified interaction curves are derived for concrete-filled beam-columns.

Behavior of Concrete-Filled Square Steel Tubular Column to H-Beam Connections using Angles (앵글을 이용한 콘크리트충전 각형강관기둥-H형강보 접합부의 거동)

  • Lee, Jae Seung;Kim, Jae Keon;Shin, Kyung Jae;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.191-199
    • /
    • 1999
  • This paper is the first step on the study of the industrialization of the mid-story steel building structures. The purpose of this study is to investigate the structural behavior of concrete-filled square steel tubular column to H-beam connections using angles and high tension bolts. The tests are carried out with five types of specimens under static loading and the main parameter is the thickness of angles. Yield-line theory which obtains connection strength by way of the lowest value based on upper-limit theory is applied to predict strength formulas.

  • PDF

Effective buckling length of steel column members based on elastic/inelastic system buckling analyses

  • Kyung, Yong-Soo;Kim, Nam-Il;Kim, Ho-Kyung;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.651-672
    • /
    • 2007
  • This study presents an improved method that uses the elastic and inelastic system buckling analyses for determining the K-factors of steel column members. The inelastic system buckling analysis is based on the tangent modulus theory for a single column and the application is extended to the frame structural system. The tangent modulus of an inelastic column is first derived as a function of nominal compressive stress from the column strength curve given in the design codes. The tangential stiffness matrix of a beam-column element is then formulated by using the so-called stability function or Hermitian interpolation functions. Two inelastic system buckling analysis procedures are newly proposed by utilizing nonlinear eigenvalue analysis algorithms. Finally, a practical method for determining the K-factors of individual members in a steel frame structure is proposed based on the inelastic and/or elastic system buckling analyses. The K-factors according to the proposed procedure are calculated for numerical examples and compared with other results in available references.

Distortional buckling formulae for cold-formed steel rack-section members

  • Silvestre, N.;Camotim, D.
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.49-75
    • /
    • 2004
  • The paper derives, validates and illustrates the application of GBT-based formulae to estimate distortional critical lengths and bifurcation stress resultants in cold-formed steel rack-section columns, beams and beam-columns with arbitrarily inclined mid-stiffeners and four support conditions. After a brief review of the Generalised Beam Theory (GBT) basics, the main concepts and procedures employed to obtain the formulae are addressed. Then, the GBT-based estimates are compared with exact results and, when possible, also with values yielded by formulae due to Lau and Hancock, Hancock and Teng et al. A few remarks on novel aspects of the rack-section beam-column distortional buckling behaviour, unveiled by the GBT-based approach, are also included.

Exact dynamic stiffness matrix for a thin-walled beam-column of doubly asymmetric cross-section

  • Shirmohammadzade, A.;Rafezy, B.;Howson, W.P.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.195-210
    • /
    • 2011
  • Bernoulli-Euler beam theory is used to develop an exact dynamic stiffness matrix for the flexural-torsional coupled motion of a three-dimensional, axially loaded, thin-walled beam of doubly asymmetric cross-section. This is achieved through solution of the differential equations governing the motion of the beam including warping stiffness. The uniform distribution of mass in the member is also accounted for exactly, thus necessitating the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, examples are given to confirm the accuracy of the theory presented, together with an assessment of the effects of axial load and loading eccentricity.

Stability of a slender beam-column with locally varying Young's modulus

  • Kutis, Vladimir;Murin, Justin
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.15-27
    • /
    • 2006
  • A locally varying temperature field or a mixture of two or more different materials can cause local variation of elasticity properties of a beam. In this paper, a new Euler-Bernoulli beam element with varying Young's modulus along its longitudinal axis is presented. The influence of axial forces according to the linearized 2nd order beam theory is considered, as well. The stiffness matrix of this element contains the transfer constants which depend on Young's modulus variation and on axial forces. Occurrence of the polynomial variation of Young's modulus has been assumed. Such approach can be also used for smooth local variation of Young's modulus. The critical loads of the straight slender columns were studied using the new beam element. The influence of position of the local Young's modulus variation and its type (such as linear, quadratic, etc.) on the critical load value and rate of convergence was investigated. The obtained results based on the new beam element were compared with ANSYS solutions, where the number of elements gradually increased. Our results show significant influence of the locally varying Young's modulus on the critical load value and the convergence rate.

Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)

  • Bilouei, Babak Safari;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1053-1063
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli beam theory. The characteristics of the equivalent composite being determined using the Mori-Tanaka model. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

An Exact Analysis of Steel Box Girders with the Effects of Distortional Deformation of Sections (단면변형의 효과를 포함한 강상자형 거더의 엄밀한 해석)

  • 진만식;이병주;김문영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2004
  • The main goal of this study is to develop MATLAB programming for an analysis of distortional deformations and stresses of the straight box girder. For this purpose, a distortional deformation theory is firstly summarized and then a BEF (Beam on Elastic Foundation) theory is presented using analogy of the corresponding variables. Finally, with governing equations of the beam-column element on elastic foundation, an exact element stiffness matrix of the beam element and nodal forces equivalent to concentrated and distributed loads are evaluated via a generalized linear eigenvalue problem. In order to verify the efficiency and accuracy of this method, distortional stresses of box girders with multiple diaphragms are presented and compared with results by FEA.