• Title/Summary/Keyword: Beam-Column connection

Search Result 499, Processing Time 0.024 seconds

Stress Distribution Behavior Hollow and Felled Circular Column Column-Box Beam Connections (비충전 및 충전 원형기둥-상자형보 접합부의 응력분포특성)

  • Hwang, Won Sup;Park, Yong Myung;Choi, Won Kyong;Kim, Young Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.433-441
    • /
    • 2002
  • This study present the stressdistribution of circular column-box beam connection in steel piers. Experiments were carried out for hollow and concrete filled connections, depending on the joint angle. To determine vertical and shear stress distribution, this study examined the equivalent web depth dc' that is mainly used in existing design equation. Lidewise, as additional equivalent web depth was introduced. Stress values that were calculated using equivalent wev depth were also compared with the test stress value. Results showed that stresses of hollow and filled connections have great differences. However, dc' has a limitation for some joint angles. Likewise, stress of filled connection was less than that of the hollow connection. The test value of filled connection was also compared with design equations that were introduced from the hollow connection.

Structural Performance Evaluation of Seismic Wide-flanged Beam-to-Rectangular Steel Tube Column Connection Details (내진 각형강관 기둥-H형강 보 접합상세의 구조성능평가)

  • Jang, Bo-Ra;Shim, Hyun-Ju;Kim, Yong-Ick;Chung, Jin-An;Oh, Young-Suk;Kim, Sang-Seup;Choi, Byong-Jeong;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.305-312
    • /
    • 2010
  • The objective of this paper is to examine the structural performance of steel moment-resisting frames on the various connection details of Seismic Wide-flanged Beam-to-Rectangular Steel Tube Column connections. Although compared to an H-shaped steel tube, a rectangular steel tube has many advantages and is more efficient, its application is limited due to the lack of experience in using it and the connection details. Existing steel moment connections using the rectangular steel tube are mainly used through plate diaphragms. The processing of construction of the rectangular steel tube is so complicated that it is hard to apply it in the field. In this study, the structural performance and the earthquake capacity of the connection details that do not cut the rectangular steel tube column were investigated. A comparative analysis of the strength, rigidity, and energy absorption capacity of the welded connection details using an end-plate and a haunch was also performed.

Developing connection design rules in China

  • Shi, Yongjiu
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.141-158
    • /
    • 2005
  • The new version of Code for Design of Steel Structures (GB50017-2003) and other design standards in China were released over the last two years. Comparing with the previous version (GBJ17-88), many clauses covering the connection design have been revised. A number of additional provisions are supplemented to specify the design requirements for beam-column moment connections, as well as gusset plates for truss joints. In this paper, a summary on the design rules on connections specified in the current Chinese code is presented, and relevant commentary and background information is provided whenever appropriate. The design criteria governing weld and bolt resistance is examined and reviewed. Moreover, several issues such as detailing requirements for stiffeners and end-plate connections are discussed.

A Study on the Moment and Shear Resisting Performance of Steel Girder - R/C Column Connection (철골 보 - 철근콘크리트 기둥 접합부의 휨 및 전단 저항성능에 관한 연구)

  • Choi, Kwang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.429-436
    • /
    • 2000
  • The composite system, which is consisted of the steel girder and reinforced concrete column has some advantages in the structural efficiency and the construction productivity by complementing the shortcomings between the two materials. This research is aimed at the development of the composite beam-column connection system by which the steel beam can be connected to the R/C column with smooth stress transfer. And, to ensure safety of this system, the tests of moment and shear resisting performance have been carried out for actual size specimen. From the test, the connection system has been preyed to take good resistance and stress transfer between steel girder and reinforced concrete column.

  • PDF

Performance Evaluation of Steel Moment Frame and Connection including Inclined Column (경사기둥을 포함한 철골모멘트 골조 및 접합부의 성능평가)

  • Kim, Yong-Wan;Kim, Taejin;Kim, Jongho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.173-182
    • /
    • 2013
  • The building design projects which are being proceeded nowadays pursue a complex and various shape of structures, escaping from the traditional and regular shape of buildings. In this new trend of the architecture, there rises a demand of the research in the structural engineering for the effective realization of such complex-shaped buildings which disassembles the orthogonality of frames. As a distinguished characteristics of the buildings in a complex-shape, there frequently are inclined columns included in the structural frame. The inclined column causes extra axial force and bending moment at the beam-column connection so it is necessary to assess those effects on the structural behavior of the frame and the connection by experiment or analysis. However, with comparing to the studies on the normal beam-column connections, the inclined column connections have not been studied sufficiently. Therefore, this study evaluated the beam-column connections having an inclined column using nonlinear and finite element analysis method. In this paper, steel moment frames having inclined columns were analyzed by the nonlinear pushover analysis to check the global behavior and beam-column connection models were analyzed by the finite element analysis to check the buckling behavior and the fracture potentials.

An evaluation equation of load capacities for CFT square column-to-beam connections with combined diaphragm

  • Choi, Sung-Mo;Jung, Do-Sub;Kim, Dae-Joong;Kim, Jin-Ho
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.303-320
    • /
    • 2007
  • The objective of this study is to clarify the structural features of members consisting of connection, as a series of the previous study on the CFT column-to-beam tensile connection with combined cross diaphragm. This connection has the merits that the stress is distributed evenly on the beam flange and the diaphragm and the stress concentration is reduced, by improving the stress transfer route and restraining abrupt deformation of diaphragm. The finite element analysis was performed to find out the stress transfer through sleeve which is an important member of the connection with combined cross diaphragm. The length and thickness of sleeve were used as variables for the analysis. As the analysis results, the length and thickness of sleeve didn't influence on the capacity of the connection and played a role of a medium to transfer the stress from the diaphragm to the filled concrete. It is proposed that the appropriate length of sleeve be the same value as the diameter of sleeve and the appropriate ratio of sleeve diameter to sleeve thickness be 20. Two equations for evaluation of the load-carrying capacity of the connection were also proposed through the modification of the evaluation equation suggested in the previous study.

Seismic Performance of Beam-Column Connections for Special Moment Frame Using 600 MPa Flexural Reinforcement (600 MPa 휨 철근을 사용한 특수 모멘트 골조의 보-기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Choi, Won-Seok;Chung, Lan;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.591-601
    • /
    • 2011
  • An experimental study was performed to evaluate the seismic performance of beam-column connections using 600 MPa re-bars for beam flexural reinforcement. Three full scale specimens of interior beam-column connection and two specimens of exterior beam-column connection were tested under cyclic loading. The specimens were designed to satisfy the requirements of Special Moment Frame according to current design code. The structural performance of the specimens with 600 MPa re-bar were compared with that of the specimen with 400 MPa re-bars. The test results showed that bond-slip increased in the beam-column joint. However, the load-carrying capacity, deformation capacity, and energy dissipation capacity of the specimens with 600 MPa re-bar were comparable to those of the specimens with 400 MPa re-bars.

Single and multi-material topology optimization of CFRP composites to retrofit beam-column connection

  • Dang, Hoang V.;Lee, Dongkyu;Lee, Kihak
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.405-411
    • /
    • 2017
  • Carbon Fiber Reinforced Plastic (CFRP) has commonly been used to strengthen existing RC structures. Wrapping the whole component with CFRP is an effective method and simple to execute. Besides, specific configuration of CFRP sheets (L, X and T shape) has also been considered in some experiments to examine CFRP effects in advance. This study aimed to provide an optimal CFRP configuration to effectively retrofit the beam-column connection using continuous material topology optimization procedure. In addition, Moved and Regularized Heaviside Functions and penalization factors were also considered. Furthermore, a multi-material procedure was also used to compare with the results from the single material procedure.

Story Drift of a Frame with Column Flange Bolted-Beam Web Welded Double Angle Connections (더블앵글로 접합된 골조의 수평처짐)

  • Yang, Jae-Guen;Kim, Ho-Keun;Kim, Ki-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.95-103
    • /
    • 2003
  • Frame is one of the most commonly used structural systems for the resistance of applied loads. Many researchers have recently conducted their studies to investigate the effect of several parameters such as the connection flexibility, boundary condition of each support, beam-to-column stiffness ratio. These parameters play important roles on the characteristic behavior of frames. A simplified spring model is proposed to obtain the story drifts of frames with various beam-to-column connection stiffnesses in this research. A point bracing system with adequate spring stiffness is also suggested to establish the relationship between the applied load and the resisting translational spring stiffness within the limit state of story drift.

  • PDF

Energy dissipation of steel-polymer composite beam-column connector

  • Wang, Yun-Che;Ko, Chih-Chin
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1161-1176
    • /
    • 2015
  • The connection between a column and a beam is of particular importance to ensure the safety of civil engineering structures, such as high-rise buildings and bridges. While the connector must bear sufficient force for load transmission, increase of its ductility, toughness and damping may greatly enhance the overall safety of the structures. In this work, a composite beam-column connector is proposed and analyzed with the finite element method, including effects of elasticity, linear viscoelasticity, plasticity, as well as geometric nonlinearity. The composite connector consists of three parts: (1) soft steel; (2) polymer; and (3) conventional steel to be connected to beam and column. It is found that even in the linear range, the energy dissipation capacity of the composite connector is largely enhanced by the polymer material. Since the soft steel exhibits low yield stress and high ductility, hence under large deformation the soft steel has the plastic deformation to give rise to unique energy dissipation. With suitable geometric design, the connector may be tuned to exhibit different strengths and energy dissipation capabilities for real-world applications.