• Title/Summary/Keyword: Beam-Column Joint

Search Result 510, Processing Time 0.038 seconds

Seismic behavior of non-seismically designed eccentric reinforced concrete beam-column joints

  • Liu, Ying;Wong, Simon H.F.;Zhang, Hexin;Kuang, J.S.;Lee, Pokman;Kwong, Winghei
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.613-625
    • /
    • 2021
  • Non-seismically designed eccentric reinforced concrete beam-column joints were extensively used in existing reinforced concrete frame buildings, which were found to be vulnerable to seismic action in many incidences. To provide a fundamental understanding of the seismic performance and failure mechanism of the joints, three 2/3-scale exterior beam-column joints with non-seismically designed details were cast and tested under reversed cyclic loads simulating earthquake excitation. In this investigation, particular emphasis was given on the effects of the eccentricity between the centerlines of the beam and the column. It is shown that the eccentricity had significant effects on the damage characteristics, shear strength, and displacement ductility of the specimens. In addition, shear deformation and the strain of joint hoops were found to concentrate on the eccentric face of the joint. The results demonstrated that the specimen with an eccentricity of 1/4 column width failed in a brittle manner with premature joint shear failure, while the other specimens with less or no eccentricity failed in a ductile manner with joint shear failure after beam flexural yielding. Test results are compared with those predicted by three seismic design codes and two non-seismic design codes. In general, the codes do not accurately predict the shear strength of the eccentric joints with non-seismic details.

Cyclic performance of steel fiber-reinforced concrete exterior beam-column joints

  • Oinam, Romanbabu M.;Kumar, P.C. Ashwin;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.533-546
    • /
    • 2019
  • This study presents an experimental investigation on six beam-column joint specimens under the lateral cyclic loading. The aim was to explore the effectiveness of steel fiber-reinforced concrete (SFRC) in reducing the transverse shear stirrups in beam-column joints of the reinforced concrete (RC) frames with strong-columns and weak-beams. Two RC and four SFRC specimens with different types of reinforcement detailing and steel fibers of volume fraction in the range of 0.75-1.5% were tested under gradually increasing cyclic displacements. The main parameters investigated were lateral load-resisting capacity, hysteresis response, energy dissipation capacity, stiffness degradation, viscous damping variation, and mode of failure. Test results showed that the diagonally bent configuration of beam longitudinal bars in the beam-column joints resulted in the shear failure at the joint region against the flexural failure of beams having straight bar configurations. However, all SFRC specimens exhibited similar lateral strength, energy dissipation potential and mode of failure even in the absence of transverse steel in the beam-column joints. Finally, a methodology has been proposed to compute the shear strength of SFRC beam-column joints under the lateral loading condition.

Seismic performance of self-sustaining precast wide beam-column connections for fast construction

  • Wei Zhang;Seonhoon Kim;Deuckhang Lee;Dichuan Zhang;Jong Kim
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.339-349
    • /
    • 2023
  • Fast-built construction is a key feature for successful applications of precast concrete (PC) moment frame system in recent construction practices. To this end, by introducing some unique splicing details in precast connections, especially between PC columns including panel zones, use of temporary supports and bracings can be minimized based on their self-sustaining nature. In addition, precast wide beams are commonly adopted for better economic feasibility. In this study, three self-sustaining precast concrete (PC) wide beam-column connection specimens were fabricated and tested under reversed cyclic loadings, and their seismic performances were quantitatively evaluated in terms of strength, ductility, failure modes, energy dissipation and stiffness degradation. Test results were compared with ASCE 41-17 nonlinear modeling curves and its corresponding acceptance criteria. On this basis, an improved macro modeling method was explored for a more accurate simulation. It appeared that all the test specimens fully satisfy the acceptance criteria, but the implicit joint model recommended in ASCE 41-17 tends to underestimate the joint shear stiffness of PC wide beam-column connection. While, the explicit joint model along with concentrated plastic hinge modeling technique is able to present better accuracy in simulating the cyclic responses of PC wide beam-column connections.

Inelastic Time History Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint on the response of RC OMRF are evaluated in the inelastic time history analysis. For an example, a 5-story structure for site class SB and seismic design category C was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was evaluated using fiber model and bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship. The hysteretic behavior was simulated using three-parameter model suggested in IDARC program. The inelastic time history analysis with PGA for return period of 2400 years showed that the model with inelastic beam-column joint yielded smaller maximum base shear force but nearly equivalent maximum roof displacement and maximum story drift as those obtained from analysis using rigid joint. The maximum story drift satisfied the criteria of KBC2009. Therefore, the inelastic shear behavior of beam-column joint could be neglected in the structural design.

Behavior of composite CFST beam-steel column joints

  • Eom, Soon-Sub;Vu, Quang-Viet;Choi, Ji-Hun;Papazafeiropoulos, George;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.583-594
    • /
    • 2019
  • In recent years, composite concrete-filled steel tubular (CFST) members have been widely utilized in framed building structures like beams, columns, and beam-columns since they have significant advantages such as reducing construction time, improving the seismic performance, and possessing high ductility, strength, and energy absorbing capacity. This paper presents a new composite joint - the composite CFST beam-column joint in which the CFST member is used as the beam. The main components of the proposed composite joint are steel H-beams, CFST beams welded with the steel H-column, and a reinforced concrete slab. The steel H-beams and CFST beams are connected with the concrete slab using shear connectors to ensure composite action between them. The structural performance of the proposed composite joint was evaluated through an experimental investigation. A three-dimensional (3D) finite element (FE) model was developed to simulate this composite joint using the ABAQUS/Explicit software, and the accuracy of the FE model was verified with the relevant experimental results. In addition, a number of parametric studies were made to examine the effects of the steel box beam thickness, concrete compressive strength, steel yield strength, and reinforcement ratio in the concrete slab on the proposed joint performance.

Seismic Analysis for RC Framed Structure considering Hysteretic Behavior of Beam-Column Joint (보-기둥 접합부의 이력거동을 고려한 RC 평면골조의 내진해석)

  • 윤정배;조용부;김영곤;우종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.599-604
    • /
    • 2000
  • The analytical studies for the test results are presented. From experimental envelope curve, hysteretic behaviors under cyclic loading are modelled for beam-column subassemblages. Modelled curves show relatively good reproduction or experimental curves. finally, seismic performances are investigated for 7 story plain framed structure by nonlinear dynamic analysis. The resulting responses are different by each beam-column joint design.

  • PDF

Hysteresis Characteristics of RC Exterior Beam-Column Joint Retrofitted with Haunch (헌치를 이용하여 보강된 RC 보-기둥 외부접합부의 반복이력 특성)

  • Lee, Young Wook;Park, Hyeong Kyeon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.115-123
    • /
    • 2017
  • To investigate the cyclic characteristics of the retrofitted exterior joints of RC frame with haunch, 70% scaled 6 beam-column exterior joint subassemblies were designed according to design guideline according to 1988 and tested with cyclic loading up to 3.5% story drift ratio. During the experiments axial forces are applied to columns to simulate gravity load. Experimental results shows that the strength of retrofitted specimens was increased steadily until 2.5% story drift ratio and their strengths increased more than 1.7 times of the non-retrofitted in case that main bar was bent away from exterior joint. The joint strength and effective stiffness of the retrofitted specimen was increased and results in more deformation capacity compared to the non-retrofitted.

Inelastic Time History Analysis of a 5-Story Reinforced Concrete IMRF (5층 철근콘크리트 중간모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk Bong;Lim, Byeong Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.13-20
    • /
    • 2012
  • In this study, 5-story structures were designed in accordance with KBC2009 for inelastic time history analysis of RC IMRF. Bending moment-curvature relationship for beam and column was identified with fiber model and bending moment-rotation relationship for beam-column joint was calculated with simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The hysteretic behavior was simulated with three-parameter model suggested in IDARC program. The analytical results showed that the inelastic shear behavior of the joint could be neglected in the structural design for seismic design category C but the structure of category D did not satisfy the criteria of FEMA 356 for collapse prevention performance level.

Testing of RC Corner Beam-column Joints under Bidirectional Loading (이방향 하중을 받는 모서리 보-기둥 접합부의 내진성능 평가)

  • Han, Sang Whan;Chang, Yong Seok;Lee, Chang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.189-196
    • /
    • 2020
  • In this study, two full-scale gravity load-designed reinforced concrete corner beam-column joints were tested by being subjected to uniand bi-directional cyclic lateral loading. The test variable was loading type: uni- or bi-directional loading. To investigate the effect of the loading type on the cyclic behavior of joint specimens, damage progression, force-deformation relation, contribution of joint deformation to total drift, joint stress-strain response, and cumulative energy dissipation were investigated. The test data suggest that bidirectional loading can amplify damage accumulation in the joint region.

Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments

  • Dar, M. Adil;Subramanian, N.;Pande, Sumeet;Dar, A.R.;Raju, J.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.243-254
    • /
    • 2020
  • Devastating RC structural failures in the past have identified that the behavior of beam-column joints is more critical and significantly governs the global structural response under seismic loading. The congestion of reinforcement at the beam-column joints with other constructional difficulties has escalated the attention required for strengthening RC beam-column joints. In this context, numerous studies have been carried out in the past, which mainly focused on jacketing the joints with different materials. However, there is no comparative study of different approaches used to strengthen RC beam-column joints, from efficiency and cost perspective. This paper presents a detailed investigation carried out to study the various strengthening schemes of exterior RC beam-column joints, viz., steel fiber reinforcement, carbon fiber reinforced polymer (CFRP) strengthening, steel haunch strengthening, and confining joint reinforcement. The effectiveness of each scheme was evaluated experimentally. These specimens were tested under horizontal loading that produced opening moments on the joints and their behavior was studied with emphasis on strength, displacement ductility, stiffness, and failure mechanism. Special attention was given to the study of crack-width.