• Title/Summary/Keyword: Beam-Column Joint

Search Result 512, Processing Time 0.024 seconds

Analytical Modeling for Two-story Two-span Reinforced Concrete Frames with Relaxed Section Details

  • Kim, Taewan;Chu, Yurim;Park, Hong-Gun
    • Architectural research
    • /
    • v.20 no.2
    • /
    • pp.53-64
    • /
    • 2018
  • A nonlinear analytical model has been proposed for two-span two-story reinforced concrete frames with relaxed section details. The analytical model is composed of beam, column, and beam-column joint elements. The goal of this study is to develop a simple and light nonlinear model for two-dimensional reinforced concrete frames since research in earthquake engineering is usually involved in a large number of nonlinear dynamic analyses. Therefore, all the nonlinear behaviors are modeled to be concentrated on flexural plastic hinges at the end of beams and columns, and the center of beam-column joints. The envelope curve and hysteretic rule of the nonlinear model for each element are determined based on experimental results, not theoretical approach. The simple and light proposed model can simulate the experimental results well enough for nonlinear analyses in earthquake engineering. Consequently, the proposed model will make it easy to developing a nonlinear model of the entire frame and help to save time to operate nonlinear analyses.

Characterization of the main component of equal width welded I-beam-to-RHS-column connections

  • Lopez-Colina, Carlos;Serrano, Miguel A.;Lozano, Miguel;Gayarre, Fernando L.;Suarez, Jesus M.;Wilkinson, Tim
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.337-346
    • /
    • 2019
  • The present paper tries to contribute fill the gap of application of the component method to tubular connections. For this purpose, one typical joint configuration in which just one component can be considered as active has been studied. These joints were selected as symmetrically loaded welded connections in which the beam width was the same as the column width. This focused the study on the component 'side walls of rectangular hollow sections (RHS) in tension/compression'. It should be one of the main components to be considered in welded unstiffened joints between I beams and RHS columns. Many experimental tests on double-sided I-beam-to-RHS-column joint with a width ratio 1 have been carried out by the authors and a finite element (FE) model was validated with their results. Then, some different analytical approaches for the component stiffness and strength have been assessed. Finally, the stiffness proposals have been compared with some FE simulations on I-beam-to-RHS-column joints. This work finally proposes the most adequate equations that were found for the stiffness and strength characterization of the component 'side walls of RHS in tension/compression' to be applied in a further unified global proposal for the application of the component method to RHS.

Behavior of composite CFST beam-concrete column joints

  • Kim, Seung-Eock;Choi, Ji-Hun;Pham, Thai-Hoan;Truong, Viet-Hung;Kong, Zhengyi;Duong, Nguyen-The;Vu, Quang-Viet
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.75-90
    • /
    • 2020
  • This paper introduces a new composite joint, which is the composite CFST beam- concrete column joint, and it is more convenient for transportation and erection than conventionally welded joints. The main components of this joint include steel H-beams welded with CFST beams, reinforced concrete columns, and reinforced concrete slabs. The steel H-beams and CFST beams are connected with a concrete slab using shear connectors to ensure composite action between them. An experimental investigation was conducted to evaluate the proposed composite joint performance. A three-dimensional (3D) finite element (FE) model was developed and analyzed for this joint using the ABAQUS/explicit. The FE model accuracy was validated by comparing its results with the relevant test results. Additionally, the parameters that consisted of the steel box beam thickness, concrete compressive strength, steel yield strength, and reinforcement ratio in the concrete slab were considered to investigate their influence on the proposed joint performance.

Mechanical performance of a new I-section weak-axis column bending connection

  • Lu, Linfeng;Xu, Yinglu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.31-44
    • /
    • 2018
  • This paper reports a novel steel beam-to-column connection suitable for use in the weak axis of I-section column. Monotonic and cyclic loading experimental investigations and numerical analysis of the proposed weak-axis connection were conducted, and the calculation procedure of the beam-column relative rotation angle and plastic rotation angle was developed and described in details. A comparative analysis of mechanical property and steel consumption were employed for the proposed I-section column weak-axis connection and box-section column bending connection. The result showed that no signs of fracturing were observed and the plastic hinge formed reliably in the beam section away from the skin plate under the beam end monotonic loading, and the plastic hinge formed much closer to the skin plate under the beam end cyclic loading. The fracture of welds between diaphragm and skin plate would cause an unstable hysteretic response under the column top horizontal cyclic loading. The proposed weak-axis connection system could not only simplify the design calculation progress when I-section column is adopted in frame structural design but also effectively satisfy the requirements of 'strong joint and weak member', as well as lower steel consumption.

Seismic Retrofit of RC Exterior Beam-Column Joints Strengthened with CFRP (CFRP를 이용한 비내진 철근콘크리트 외부 보-기둥 접합부의 내진 보강)

  • Kim, Min;Lee, Ki-Hak;Lee, Jae-Hong;Woo, Sung-Woo;Lee, Jung-Weon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.729-736
    • /
    • 2006
  • It has been shown that many Reinforced Concrete(RC) structures designed without seismic details have experienced brittle shear failures in the beam-column joint area and resulted in large permanent deformations and structural collapse. In this study, experimental investigations into the performance of exterior reinforced concrete beam-column joints strengthened with the carbon fiber-reinforced polymer(CFRP) under cyclic loading were presented. The CFRP has been applied by choosing different combinations and locations to determine the effective way to improve structural performances of joints. Eight beam-column joints were tested to investigate behaviors of each specimen under cyclic load and to compare performances of seismic retrofit. According to the experimental study, the retrofit strengthened with the CFRP provides significant improvements of flexural capacity and ductility of beam-column joints originally built without seismic details.

Behavior of High Strength Reinforced Concrete Wide Beam-Column Joint with Slab (슬래브가 있는 고강도 철근 콘크리트 넓은 보-기둥 접합부의 거동)

  • 최종인;안종문;신성우;박성식;이범식;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.493-498
    • /
    • 2002
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete( $f_{ck}$ =240, 500kgf/c $m^2$), the ratio of the column-to-beam flexural capacity( $M_{r}$=2$\Sigma$ $M_{c}$$\Sigma$ $M_{b}$ ; 0.77-2.26), extended length of the column concrete($\ell$$_{d}$ ; 0, 9.6, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied the required minimum ductile capacity according to increase the compressive strength, (2). In the design of the wide beam-column joints, one should be consider the effects of slab stiffness which is ignored in the current design code and practice.ice.e.e.

  • PDF

Non-invasive steel haunch upgradation strategy for seismically deficient reinforced concrete exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.719-734
    • /
    • 2018
  • Prior to the introduction of modern seismic guidelines, it was a common practice to provide straight bar anchorage for beam bottom reinforcement of gravity load designed building. Exterior joints with straight bar anchorages for beam bottom reinforcements are susceptible to sudden anchorage failure under load reversals and hence require systematic seismic upgradation. Hence in the present study, an attempt is made to upgrade exterior beam-column sub-assemblage of a three storied gravity load designed (GLD) building with single steel haunch. Analytical formulations are presented for evaluating the haunch forces in single steel haunch retrofit. Influence of parameters that affect the efficacy and effectiveness of the single haunch retrofit are also discussed. The effectiveness of the single haunch retrofit for enhancing seismic performance of GLD beam-column specimen is evaluated through experimental investigation under reverse cyclic loading. The single steel haunch retrofit had succeeded in preventing the anchorage failure of beam bottom bars of GLD specimen, delaying the joint shear damage and partially directing the damage towards the beam. A remarkable improvement in the load carrying capacity of the upgraded GLD beam-column sub-assemblage is observed. Further, a tremendous improvement in the energy dissipation of about 2.63 times that of GLD specimen is observed in the case of upgraded GLD specimen. The study also underlines the efficacy of single steel haunch retrofit for seismic upgradation of deficient GLD structures.

Seismic-resistant slim-floor beam-to-column joints: experimental and numerical investigations

  • Don, Rafaela;Ciutina, Adrian;Vulcu, Cristian;Stratan, Aurel
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.307-321
    • /
    • 2020
  • The slim-floor solution provides an efficient alternative to the classic slab-over-beam configuration due to architectural and structural benefits. Two deficiencies can be identified in the current state-of-art: (i) the technique is limited to nonseismic applications and (ii) the lack of information on moment-resisting slim-floor beam-to-column joints. In the seismic design of framed structures, continuous beam-to-column joints are required for plastic hinges to form at the ends of the beams. The present paper proposes a slim-floor technical solution capable of expanding the current application of slim-floor joints to seismic-resistant composite construction. The proposed solution relies on a moment-resisting connection with a thick end-plate and large-diameter bolts, which are used to fulfill the required strength and stiffness characteristics of continuous connections, while maintaining a reduced height of the configuration. Considering the proposed novel solution and the variety of parameters that could affect the behavior of the joint, experimental and numerical validations are compulsory. Consequently, the current paper presents the experimental and numerical investigation of two slim-floor beam-to-column joint assemblies. The results are discussed in terms of moment-rotation curves, available rotational capacity and failure modes. The study focuses on developing reliable slim-floor beam joints that are applicable to steel building frame structures located in seismic regions.

Experimental Study on the Structural Behavior of Concrete-Filled Circular Tubular Column to H-Beam connections without Diaphragm (다이아프램이 없는 콘크리트 충전 원형강관 기둥-H형강 보 접합부의 구조적 거동에 관한 실험적 연구)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.13-22
    • /
    • 1997
  • This paper is concerned with an experimental study on structural behavior of Concrete-Filled Circular Tubular(CFCT) column to H-beam connections. The important parameters are the number of inner reinforced rib and the width of H-beam flange(100, 150, 200mm) with variable column thickness(5.8mm, 9.2mm, 12.5mm) around the joint between CFCT and H-beam. Test results are summarized for the displacement, strength, initial stiffness, failure mode and energy absorption capacity of each specimen. The purpose of this paper is to investigate the initial stiffness and the strength of connections to evaluate the structural behavior of the CFCT column to H-beam connections. From the discussion about the test results, the basic data for non diaphragm connection design would be suggested.

  • PDF

Effect of loading velocity on the seismic behavior of RC joints

  • Wang, Licheng;Fan, Guoxi;Song, Yupu
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.665-679
    • /
    • 2015
  • The strain rate of reinforced concrete (RC) structures stimulated by earthquake action has been generally recognized as in the range from $10^{-4}/s$ to $10^{-1}/s$. Because both concrete and steel reinforcement are rate-sensitive materials, the RC beam-column joints are bound to behave differently under different strain rates. This paper describes an investigation of seismic behavior of RC beam-column joints which are subjected to large cyclic displacements on the beam ends with three loading velocities, i.e., 0.4 mm/s, 4 mm/s and 40 mm/s respectively. The levels of strain rate on the joint core region are correspondingly estimated to be $10^{-5}/s$, $10^{-4}/s$, and $10^{-2}/s$. It is aimed to better understand the effect of strain rates on seismic behavior of beam-column joints, such as the carrying capacity and failure modes as well as the energy dissipation. From the experiments, it is observed that with the increase of loading velocity or strain rate, damage in the joint core region decreases but damage in the plastic hinge regions of adjacent beams increases. The energy absorbed in the hysteresis loops under higher loading velocity is larger than that under quasi-static loading. It is also found that the yielding load of the joint is almost independent of the loading velocity, and there is a marginal increase of the ultimate carrying capacity when the loading velocity is increased for the ranges studied in this work. However, under higher loading velocity the residual carrying capacity after peak load drops more rapidly. Additionally, the axial compression ratio has little effect on the shear carrying capacity of the beam-column joints, but with the increase of loading velocity, the crack width of concrete in the joint zone becomes narrower. The shear carrying capacity of the joint at higher loading velocity is higher than that calculated with the quasi-static method proposed by the design code. When the dynamic strengths of materials, i.e., concrete and reinforcement, are directly substituted into the design model of current code, it tends to be insufficiently safe.