• 제목/요약/키워드: Beam tube

검색결과 453건 처리시간 0.022초

콘크리트 충전원형강관기둥의 부착응력에 있어 shear-connector의 영향에 관한 실험적 연구 (An experimental study about an effect of shear-connector at a bond stress in concrete filled circular steel tubular column)

  • 박성무;김성수;김원호;이형석;이우진;김경모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.567-572
    • /
    • 2001
  • A transmission of load that is transmitted by beam in steel beam-column joint depends on bond strength between concrete and steel tube. But it is different to transmit a load efficiently in the established concrete filled steel tubular column. Therefore, shear-connector is demanded for a reinforcement about a transmission of load. An ascent of bond stress and a transmission of load after debonding are expected by a reinforcement of shear-connector.

  • PDF

복합모멘트접합을 갖는 콘크리트 충전 보-기둥 합성접합부의 반복하중 실험 (Cyclic Loading Tests of Concrete-Filled Composite Beam-Column Connections with Hybrid Moment Connections)

  • 임종진;김동관;이상현;이창남;엄태성
    • 한국강구조학회 논문집
    • /
    • 제28권5호
    • /
    • pp.345-354
    • /
    • 2016
  • 최근 합성 보-기둥 접합부를 위한 복합모멘트접합(hybrid moment connection)상세가 개발되었다. 기둥으로 팔각형태의 콘크리트 충전강관이 사용되었고, 보에는 U단면 콘크리트 충전강관이 사용되었다. 보-기둥 모멘트접합을 위해 보 강관은 기둥 강판에 직접 용접되었다. 하지만 보 하부 플랜지는 응력집중을 피하기 위하여 기둥 강판에 용접되지 않았고, 대신 보 플랜지의 인장력을 전달하기 위해 기둥 관통철근이 사용되었다. 기존 외다이어프램 보강상세 및 복합모멘트접합 상세를 갖는 총 4개의 실험체를 제작하고, 반복하중실험을 수행하였다. 실험결과 복합모멘트접합 상세는 보 플랜지의 인장력이 기둥 내부로 효과적으로 전달되었다. 또한, 하중재하능력 및 변형능력이 기존 외다이어프램 상세와 거의 동일한 수준으로 나타났다. 하지만, 최종 접합부 파괴모드는 복합모멘트접합 상세에 따라 영향을 받았다.

임피던스 튜브 내에 설치된 평판의 음파투과해석 (An Analysis of the Sound Transmission through a Plate Installed inside an Impedance Tube)

  • 김현실;김봉기;김상렬;이성현
    • 한국음향학회지
    • /
    • 제34권3호
    • /
    • pp.219-226
    • /
    • 2015
  • 본 논문은 단면이 정사각형인 임피던스 튜브 내에 고정된 평판의 STL(Sound Transmission Loss)을 해석적으로 구하는 방법을 다루었다. 평판의 진동과 튜브 내의 음장의 연성거동(coupled motion)을 고려하였는데 평판의 진동과 튜브 음장을 무한 급수의 합으로 전개하였으며 평면파 가정을 이용하여 처음 몇 개의 모드만 고려하여도 충분히 정확한 결과를 얻음을 보였다. 평판은 클램프(clamp) 지지로 가정하였는데 진동 모드는 단면의 가로 및 세로방향 보(beam) 진동 모드의 곱으로 전개하였고 고유진동수는 Rayleigh-Ritz 방법을 이용하여 구하였다. 평판의 STL은 가장 낮은 고유진동수에서 골(dip)을 가지며 주파수가 이보다 작아지면 STL은 커짐을 보였다. 기존 논문의 측정 및 FEM(Finite Element Method) 해석결과와 비교한 결과 잘 일치함을 확인하였다.

Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel

  • Guo, Yan;Lian, Ming;Zhang, Hao;Cheng, Qianqian
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.827-841
    • /
    • 2022
  • The rotation capacities of the plastic hinges located at beam-ends are significantly reduced in traditional steel framed-tube structures (SFTSs) because of the small span-to-depth ratios of the deep beams, leading to the low ductility and energy dissipation capacities of the SFTSs. High-strength steel framed-tube structures with replaceable shear links (HSSFTS-RSLs) are proposed to address this issue. A replaceable shear link is located at the mid-span of a deep spandrel beam to act as a ductile fuse to dissipate the seismic energy in HSSFTS-RSLs. A 2/3-scaled HSSFTS-RSL specimen with a shear link fabricated of high-strength low-alloy Q355 structural steel was created, and a cyclic loading test was performed to study the hysteresis behaviors of this specimen. The test results were compared to the specimens with soft steel shear links in previous studies to investigate the feasibility of using high-strength low-alloy steel for shear links in HSSFTS-RSLs. The effects of link web stiffener spaces on the cyclic performance of the HSSFTS-RSLs with Q355 steel shear links were investigated based on the nonlinear numerical analysis. The test results indicate that the specimen with a Q355 steel shear link exhibited a reliable and stable seismic performance. If the maximum interstory drift of HSSFTS-RSL is designed lower than 2% under earthquakes, the HSSFTS-RSLs with Q355 steel shear links can have similar seismic performance to the structures with soft steel shear links, even though these shear links have similar shear and flexural strength. For the Q355 steel shear links with web height-to-thickness ratios higher than 30.7 in HSSFTS-RSLs, it is suggested that the maximum intermediate web stiffener space is decreased by 15% from the allowable space for the shear link in AISC341-16 due to the analytical results.

기둥관통형 RC 기둥-철골 보 접합부에 관한 실험적 연구 (An Experimental Study on Column Penetration Joint of RC Column-Steel Beam)

  • 김승훈;한상환;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.475-480
    • /
    • 1998
  • The composite framed structures, consisting of RC columns and steel beams more popular in korea because of their efficiency and quality. However the force transfer mechanisms between the column and beam may by very complicated since the materials of columns and beams are different. This study develops "the column penetration joint" which the web of steel beam doesn't penetrate and which could improve the strength, deformation, and energy dissipation capacities compared to existing composite joints. It is the concrete-filled square tube joint with the exterior diaphragms and the cruciform stiffening plates. This study evaluated the strength of RC column penetration to steel beam connection by analyzing the results of partial experiments, and reviewed the applicability the strength formula through the comparison of tested results of joint experiment.

  • PDF

쉐도우마스크의 열변형과 전자빔의 오차 해석 (Analysis of Thermal Deformations of Shadow Mask and Electronic Beam Mislanding)

  • 김현규;박영호;김상기;임세영
    • 전자공학회논문지B
    • /
    • 제31B권6호
    • /
    • pp.81-90
    • /
    • 1994
  • Finite element analysis is performed for transient thermal deformation of a shadow mask inside the Braun tube and the landing shift or mislanding of the electronic beam is calclated. The shadow mask has numerous slits through which the electronic beams are guided to land on the designed phosphor. Its thermal deformations therefore cause the mislanding of the electronic beam and result in decolorization of a screen. For realistic finite element analysis, firstly the effective thermal conductivity and the effective elastric modulus are calculated, and the shadow mask is modeled as shell without slits. Next the nonlinear finite element formulation is developed for transient heat transfer on the shadow mask, wherein thermal radiation is a major heat transfer mechanism. Analysis of the resulting thermoelastic deformations is followed, from which the mislanding of the electronic beam is obtained. The present finite element scheme may be efficiently used for thermal deformation design of a shadow mask.

  • PDF

이형 하부다이아프램으로 보강된 각형 CFT 기둥-보 접합부의 내진성능에 관한 연구 (A Study on Seismic Performance for CFT Square Column-to-Beam Connections Reinforced with Asymmetric Lower Diaphragms)

  • 최성모;윤여상;김요숙;김진호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.163-171
    • /
    • 2003
  • Most of existing beam-to-column connections are reinforced symmetrically because of reverse action cause by earthquake but in the weak-earthquake region like Korea connections reinforced asymmetrically can be used. Specially, the connections between CFT(Concrete Filled Tube) column and H-shape beam can be applied by simplified lower diaphragm. The tensile capacity of Combined Cross Diaphragm for upper reinforcing was tested by simple tension test and four types for lower reinforcing; Combined Cross, None, Horizontal T-bar and Vertical Plate were tested by ANSI/AISC SSPEC 2002 loading program. Horizontal T-bar and stud bolts in vertical flat bar transmit tensile stress from bottom flange of beam to filled concrete. All test specimens were satisfied 0.01 radian of inelastic rotational requirement in ordinary moment frame of AISC seismic provision. As the results of parametric studies, simplified lower diaphragms demonstrated an outstanding strength, stiffness and plastic deformation capacity to use sufficient seismic performance in the field.

  • PDF

Interfacial Stress Concentrations of Vertical Through-plate to H-beam Connections in CFT Column

  • Choi, Insub;Chang, HakJong;Kim, JunHee
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.325-334
    • /
    • 2020
  • This paper aims to evaluate the interfacial stress concentrations on connection between vertical through-plate and H-beam in CFT column. Full-scale experiments were performed on three specimens with varying thickness of the vertical through-plate to investigate the interfacial stress concentration factor in the connections. The specimens underwent brittle failure at the location where the steel beam is connected to the vertical through-plate before the steel beam reached its plastic moment. The strain data of the part were analyzed, and the sectional analyses were conducted to determine appropriate residual stress models. In addition, the stress concentration factor was quantified by comparing the analytical local behavior in which the stress concentration is not reflected and the experimental data reflecting the stress concentration. The results showed that the maximum reduction of the stress concentration factor due to an increase in the thickness of the vertical through-plate is 50.3%.

항공기용 연료호스의 빔 시일 피팅의 형상변화에 따른 접촉특성에 관한 연구 (A Study on Contact Characteristics by the Geometry Variation of Beam Seal Fitting of an Aircraft Fuel Hose)

  • 전준영;김병탁
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.101-108
    • /
    • 2013
  • An aircraft fuel hose is a kind of high pressure hose, and generally consists of a nipple, a socket, an inner tube, and a reinforcement layer to increase the tensile strength. Especially the nipple supports the other components in manufacturing stages such as the swaging or crimping processes however, the nipple also serves to prevent leakage in cases of hose engagement with a hydraulic system. To ensure the seal of the hose assembly, a beam seal fitting with metal-to-metal contact is usually adopted at the end of a nipple. Therefore, the geometry of the beam is an important parameter to be determined to make sure there is sufficient contact force. This study aims to investigate the effects of beam seal geometry on the contact force by changing the inclined angle and the thickness of the beam. The results reveal that the proper thickness and inclined angle of the beam seal are 0.45 mm and $8.5^{\circ}$, respectively.

Experimental study on innovative tubular web RBS connections in steel MRFs with typical shallow beams

  • Saleh, Aboozar;Zahrai, Seyed M.;Mirghaderi, Seyed R.
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.785-808
    • /
    • 2016
  • An innovative Reduced Beam Section (RBS) connection, called Tubular Web RBS connection (TW-RBS), has been recently introduced and its performance has been numerically investigated in some earlier studies. The TW-RBS connection is a kind of accordion-web RBS connection in which part of the flat web of the beam is replaced by a steel tube at the expected region of the plastic hinge. This paper presents experimental results of three TW-RBS connections under cyclic loading. Obtained results indicated that TW-RBS reduces contribution of the beam web to the whole moment strength and creates a ductile fuse far from components of the beam-to-column connection. Besides, TW-RBS connection can increase story drift capacity up to 9% in the case of shallow beams which is much more than those stipulated by the current seismic codes. Based on the experimental results, the tubular web in the plastic hinge region improves lateral-torsional buckling stability of the beam such that only local buckling of the beam flange at the center of the reduced section was observed during the tests. In order to achieve a better understanding, behavior of all TW-RBS specimens are also numerically investigated and compared with those of experimental results.