• Title/Summary/Keyword: Beam theory

Search Result 1,666, Processing Time 0.02 seconds

On Effects of Large-Deflected Beam Analysis by Iterative Transfer Matrix Approach

  • Sin, Jung-Ho
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.131-136
    • /
    • 1988
  • A small-deflected beam can be easily solved by assuming a linear system. But a large-deflected beam can not be solved by superposition of the displacements, because the system is nonlinear. The solutions for the large-deflection problems can not be obtained directly from elementary beam theory for linearized systems since the basic assumptions are no longer valid. Specifically, elementary theory neglects the square of the first derivative in the beam curvature formula and provides no correction for the shortening of the moment-arm cause by transverse deflection. These two effects must be considered to analyze the large deflection. Through the correction of deflected geometry and internal axial force, the proposed new approach is developed from the linearized beam theory. The solutions from the proposed approach are compared with exact solutions.

  • PDF

An analytical method for free vibration analysis of functionally graded sandwich beams

  • Bouakkaz, K.;Hadji, L.;Zouatnia, N.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.59-73
    • /
    • 2016
  • In this paper, a hyperbolic shear deformation beam theory is developed for free vibration analysis of functionally graded (FG) sandwich beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded sandwich beam are assumed to vary according to power law distribution of the volume fraction of the constituents. The core layer is still homogeneous and made of an isotropic material. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Illustrative examples are given to show the effects of varying gradients and thickness to length ratios on free vibration of functionally graded sandwich beams.

Intelligent computer modelling and simulation for the large amplitude of nano systems

  • Yi, Wenjuan
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The nonlinear dynamic behavior of a nonuniform small-scale nonlocal beam is investigated in this work. The nanobeam is theoretically modeled using the nonlocal Eringen theory, as well as a few of Von-nonlinear Kármán's theories and the classical beam theory. The Hamilton principle extracts partial differential equations (PDE) of an axially functionally graded (AFG) nano-scale beam consisting of SUS304 and Si3N4 throughout its length, and an elastic Winkler-Pasternak substrate supports the tapered AFG nanobeam. The beam thickness is a function of beam length, and it constantly varies throughout the length of the beam. The numerical solution strategy employs an iteration methodology connected with the generalized differential quadratic method (GDQM) to calculate the nonlinear outcomes. The nonlinear numerical results are presented in detail to examine the impact of various parameters such as nonlinear amplitude, nonlocal parameter, the component of the elastic foundation, rate of cross-section change, and volume fraction parameter on the linear and nonlinear free vibration characteristics of AFG nanobeam.

Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load (전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링)

  • Kim, Jun Soo;Kim, Seong Jong;Lee, Hyuk;Ha, Sung Kyu;Lee, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1547-1557
    • /
    • 2013
  • A forced vibration model of a rail system was established using the Timoshenko beam theory to determine the dynamic response of a rail under time-varying load considering the damping effect and stiffness of the elastic foundation. By using a Fourier series and a numerical method, the critical velocity and dynamic response of the rail were obtained. The forced vibration model was verified by using FEM and Euler beam theory. The permanent deformation of the rail was predicted based on the forced vibration model. The permanent deformation and wear were observed through the experiment. Parametric studies were then conducted to investigate the effect of five design factors, i.e., rail cross-section shape, rail material density, rail material stiffness, containment stiffness, and damping coefficient between rail and containment, on four performance indices of the rail, i.e., critical velocity, maximum deflection, maximum longitudinal stress, and maximum shear stress.

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Heireche, Houari;Tounsi, Abdelouahed;Alwabli, Afaf S.;Alhebshi, Alawiah M.;Al-ghmady, Khalid;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.443-457
    • /
    • 2019
  • In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.

Free vibration of imperfect sigmoid and power law functionally graded beams

  • Avcar, Mehmet
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.603-615
    • /
    • 2019
  • In the present work, free vibration of beams made of imperfect functionally graded materials (FGMs) including porosities is investigated. Because of faults during process of manufacture, micro voids or porosities may arise in the FGMs, and this situation causes imperfection in the structure. Therefore, material properties of the beams are assumed to vary continuously through the thickness direction according to the volume fraction of constituents described with the modified rule of mixture including porosity volume fraction which covers two types of porosity distribution over the cross section, i.e., even and uneven distributions. The governing equations of power law FGM (P-FGM) and sigmoid law FGM (S-FGM) beams are derived within the frame works of classical beam theory (CBT) and first order shear deformation beam theory (FSDBT). The resulting equations are solved using separation of variables technique and assuming FG beams are simply supported at both ends. To validate the results numerous comparisons are carried out with available results of open literature. The effects of types of volume fraction function, beam theory and porosity volume fraction, as well as the variations of volume fraction index, span to depth ratio and porosity volume fraction, on the first three non-dimensional frequencies are examined in detail.

Control of free vibration with piezoelectric materials: Finite element modeling based on Timoshenko beam theory

  • Song, Myung-Kwan;Noh, Hyuk-Chun;Kim, Sun-Hoon;Han, In-Seon
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.477-501
    • /
    • 2005
  • In this study, a new smart beam finite element is proposed for the finite element modeling of beam-type smart structures that are equipped with bonded plate-type piezoelectric sensors and actuators. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered in the formulation. By using a variational principle, the equations of motion for the smart beam finite element are derived. The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. The proposed smart beam finite element is applied to the free vibration control adopting a constant gain feedback scheme. The electrical force vector, which is obtained in deriving an equation of motion, is the control force equivalent to that in existing literature. Validity of the proposed element is shown through comparing the analytical results of the verification examples with those of other previous researchers. With the use of smart beam finite elements, simulation of free vibration control is demonstrated by sensing the voltage of the piezoelectric sensors and by applying the voltages to the piezoelectric actuators.

Analysis of Post-tensioned Slab Bridge by Means of Specially Orthotropic Theory (특별직교이방성 이론에 의한 포스트텐션 슬래브교의 해석)

  • Han, Bong-Koo;Bang, Bae-San
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.13-17
    • /
    • 2010
  • A post-tensioned slab bridge is analyzed by the specially orthotropic theory. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This slab bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis. The result of this paper can be used for post-tensioned slab bridge analysis by the engineers with undergraduate study in near future.

  • PDF

Transfer matrix formulations and single variable shear deformation theory for crack detection in beam-like structures

  • Bozyigit, Baran;Yesilce, Yusuf;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • This study aims to estimate crack location and crack length in damaged beam structures using transfer matrix formulations, which are based on analytical solutions of governing equations of motion. A single variable shear deformation theory (SVSDT) that considers parabolic shear stress distribution along beam cross-section is used, as well as, Timoshenko beam theory (TBT). The cracks are modelled using massless rotational springs that divide beams into segments. In the forward problem, natural frequencies of intact and cracked beam models are calculated for different crack length and location combinations. In the inverse approach, which is the main concern of this paper, the natural frequency values obtained from experimental studies, finite element simulations and analytical solutions are used for crack identification via plots of rotational spring flexibilities against crack location. The estimated crack length and crack location values are tabulated with actual data. Three different beam models that have free-free, fixed-free and simple-simple boundary conditions are considered in the numerical analyses.

Timoshenko theory effect on the vibration of axially functionally graded cantilever beams carrying concentrated masses

  • Rossit, Carlos A.;Bambill, Diana V.;Gilardi, Gonzalo J.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.703-711
    • /
    • 2018
  • In this paper is studied the effect of considering the theory of Timoshenko in the vibration of AFG beams that support ground masses. As it is known, Timoshenko theory takes into account the shear deformation and the rotational inertia, provides more accurate results in the general study of beams and is mandatory in the case of high frequencies or non-slender beams. The Rayleigh-Ritz Method is employed to obtain approximated solutions of the problem. The accuracy of the procedure is verified through results available in the literature that can be represented by the model under study. The incidence of the Timoshenko theory is analyzed for different cases of beam slenderness, variation of its cross section and compositions of its constituent material, as well as different amounts and positions of the attached masses.