• Title/Summary/Keyword: Beam stiffener

Search Result 95, Processing Time 0.022 seconds

Structure Behavior Evaluation of Beams composited with Steel and Reinforced Concrete (철근콘크리트와 강을 합성한 복합 단면보의 구조거동평가)

  • Kim, In Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.665-673
    • /
    • 2008
  • The composite structures of steel and reinforced concrete, which have been widely used in large-scale concrete structures, werestudied to investigate the cause of unexpected cracks and to verify the composite actions between the two materials. Vertical stiffeners between flanges, studs and dowel bars, stirrups, and concrete strength were chosen as experimental variables in afour-point loading test. The results showed that the vertical stiffener prevented not only the local web buckling, but also bond failures between steel and concrete. It increased the flexural resistance (fracture loads) due to the composite action of two materials, compared withthose of any experimental variable. However, the composite behavior of steel reinforced concrete beam was not affected seriously by additional studs, dowel bars, stirrups, and concrete strength.

Full scale test and alnalytical evaluation on flexural behavior of tapered H-section beams with slender web

  • Lee, Seong Hui;Choi, Sung Mo;Lee, E.T.;Shim, Hyun Ju
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.389-402
    • /
    • 2008
  • In December 2005, one(A) of the two pre-engineered warehouse buildings in the port of K City of Korea was completely destroyed and the other(B) was seriously damaged to be demolished. Over-loaded snow and unexpected blast of wind were the causes of the accident and destructive behavior was brittle fracture caused by web local buckling and lateral torsional buckling at the flange below rafter. However, the architectural design technology of today based on material non-linear method does not consider the tolerances to solve the problem of such brittle fracture. So, geometric non-linear evaluation which includes initial deformation, width-thickness ratio, web stiffener and unbraced length is required. This study evaluates the structural safety of 4 models in terms of width-thickness ratio and unbraced length using ANSYS 9.0 with parameters such as width-thickness ratio of web, existence/non-existence of stiffener and unbraced length. The purpose of this study is to analyze destructive mechanism of the above-mentioned two warehouse buildings and to provide ways to promote the safety of pre-engineered buildings.

Eigenvalue Analysis of Stiffened Plates on Pasternak Foundations (Pasternak지반위에 놓인 보강판의 고유치해석)

  • Lee, Byoung-Koo;Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.151-158
    • /
    • 2005
  • This research analyzes eigenvalue analysis of stiffened plates on the Pasternak foundations using the finite clement method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity clement system and 3-nodes finite element system were used for plate and beam elements, respectively. Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundations is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in reference, experimental solutions and solutions obtained by SAP 2000. The natural frequency of stiffened plates on Pasternak foundations were determined according to changes or foundation parameters and dimensions of stiffener.

Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel

  • Guo, Yan;Lian, Ming;Zhang, Hao;Cheng, Qianqian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.827-841
    • /
    • 2022
  • The rotation capacities of the plastic hinges located at beam-ends are significantly reduced in traditional steel framed-tube structures (SFTSs) because of the small span-to-depth ratios of the deep beams, leading to the low ductility and energy dissipation capacities of the SFTSs. High-strength steel framed-tube structures with replaceable shear links (HSSFTS-RSLs) are proposed to address this issue. A replaceable shear link is located at the mid-span of a deep spandrel beam to act as a ductile fuse to dissipate the seismic energy in HSSFTS-RSLs. A 2/3-scaled HSSFTS-RSL specimen with a shear link fabricated of high-strength low-alloy Q355 structural steel was created, and a cyclic loading test was performed to study the hysteresis behaviors of this specimen. The test results were compared to the specimens with soft steel shear links in previous studies to investigate the feasibility of using high-strength low-alloy steel for shear links in HSSFTS-RSLs. The effects of link web stiffener spaces on the cyclic performance of the HSSFTS-RSLs with Q355 steel shear links were investigated based on the nonlinear numerical analysis. The test results indicate that the specimen with a Q355 steel shear link exhibited a reliable and stable seismic performance. If the maximum interstory drift of HSSFTS-RSL is designed lower than 2% under earthquakes, the HSSFTS-RSLs with Q355 steel shear links can have similar seismic performance to the structures with soft steel shear links, even though these shear links have similar shear and flexural strength. For the Q355 steel shear links with web height-to-thickness ratios higher than 30.7 in HSSFTS-RSLs, it is suggested that the maximum intermediate web stiffener space is decreased by 15% from the allowable space for the shear link in AISC341-16 due to the analytical results.

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.

Resistant Capacity of Longitudinally Traperzoidal Web Section with Opening (사다리꼴 유공웨브 형강보의 안전내력에 관한 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.63-71
    • /
    • 1992
  • Generally, Web & Flange of I shape beam are composed of plane for optimization of measurement in investigating the behavior resistant to horizontal force and bending moment on large section Therefore, longitudinally traperzoidal web section beam has an important function as a body for carrying more load and ensuring more support area. There is only a limited usefulness for analyzing the behavior of web section with opening. It is experimentally verified that this traperzoidal web section has a good resistant caopacity. conclustions on the above research results are as follows : 1) resistant capacity on the above can be more 15% increased than normal case 2) stiffener welding work and complexity of shopdrawing can be excluded in advance 3) traperzoidal section can be applied in structural practice.

  • PDF

An Experimental Study on a Bond Stress in Concrete Filled Circular Steel Tubular Column Strengthened by the Stiffener (스티프너로 보강한 콘크리트 충전 원형 강관기둥의 부착응력에 관한 실험적 연구)

  • Park, Sung-Moo;Kim, Sung-Su;Kim, Won-Ho;Lee, Hyung-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.2 s.4
    • /
    • pp.51-58
    • /
    • 2002
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

Stability Analysis of Stiffened Plates on Elastic Foundations (탄성지반으로 지지된 보강판의 안정해석)

  • Lee, Byoung-Koo;Lee, Yong-Soo;Oh, Soog-Kyoung;Lee, Tae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.947-955
    • /
    • 2003
  • This research analyzes the dynamic stability of stiffened plates on elastic foundations using the finite element method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity element system and 3-nodes finite element system were used for plate and beam elements, respectively Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundation is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in open literature and experimental solutions. The dynamic stability legions of stiffened plates on Pasternak foundations were determined according to changes of in-plane stresses, foundation parameters and dimensions of stiffener.

Seismic Performance of Wide Flange Beam-to-Concrete Filled Tube Column Joints with Stiffening Plates around the Column (사각판 스티프너로 보강한 콘크리트 충전강관 기둥과 H형강 보 접합부의 내진성능)

  • Park, Jong Won;Kang, Seoung Min;Kim, Wook Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.167-174
    • /
    • 2003
  • This paper presented the results of cyclic loading tests of 7 full-scale beams to column subassemblages with improved connection detail i.e., fillets of the stiffening plates at the column corners and ends of the stiffener-to-beam flange weld. Major findings from the test results were: (1) Fillets reduced the stress concentrations that may cause early brittle fractures and considerably improved the cyclic performance compared to the detail without fillets. (2) As the width of the stiffening plate increased, the stiffness and peak strength increased and energy dissipation capacity decreased. (3) While all specimens failed by a fracture, they could develop a total rotation of 0.04 radian required for special moment resisting frames.

Load Transferring Mechanism and Design Method of Effective Detailings for Steel Tube-Core Concrete Interaction in CFT Columns with Large-Section

  • Li, Yuanqi;Luo, Jinhui;Fu, Xueyi
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.223-232
    • /
    • 2018
  • Two novel types of construction detailings, including using the distributive beam and the inner ring diaphragm in the joint between large-section CFT columns and outrigger truss to enhance the transferring efficiency of huge vertical load, and using the T-shaped stiffeners in the steel tube of large-section CFT columns to promote the local buckling capacity of steel tubes, were tested to investigate their working mechanism and design methods. Experimental results show that the co-working performance between steel tube and inner concrete could be significantly improved by setting the distributive beam and the inner ring diaphragm which can transfer the vertical load directly in the large-section CFT columns. Meanwhile, the T-shaped stiffeners are very helpful to improve the local bulking performance of steel tubes in the column components by the composite action of T-shaped stiffeners together with the core concrete under the range of flange of T-shaped stiffeners. These two approaches can result in a lower steel cost in comparison to normal steel reinforced concrete columns. Finally, a practical engineering case was introduced to illustrate the economy benefits achieved by using the two typical detailings.