• Title/Summary/Keyword: Beam splitter

Search Result 121, Processing Time 0.026 seconds

Development of Optical Fiber Hydrogen Sensor Based on Polarization-Diversity Loop Configuration Using Pd-Coated Polarization-Maintaining Fiber (팔라듐 코팅된 편광 유지 광섬유를 이용한 편광 상이 배치 구조 기반 광섬유 수소 센서의 개발)

  • Noh, Tae-Kyu;Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, we propose a fiber-optic hydrogen sensor using a polarization-diversity loop configuration composed of a polarization beam splitter, two quarter-wave plates, and a polarization-maintaining fiber coated with palladium whose thickness is ~400nm. One transmission dip of the output interference spectrum of the proposed sensor, chosen as a sensor indicator, was observed to spectrally shift with the increase of the hydrogen concentration, and the sensing indicator showed a wavelength shift of ~2.48nm at a hydrogen concentration of 4%. Except for a hydrogen concentration of 4%, the response time of the proposed sensor was measured as less than 12.5s and did not show significant dependence on the hydrogen concentration. In particular, the proposed fiber hydrogen sensor is more durable and highly resistant to external stress applied on a transverse axis of an optical fiber, compared with other hydrogen sensors based on side-polished fibers or fiber gratings.

A Study on the Electrical Propertis of Optical Potential Transformer for GIS (GIS용 광PT의 전기적 특성에 관한 연구)

  • Lee, Su-Woong;Lee, Sung-Gap;Park, Sang-Man;Wu, Hyeong-Gwan;Won, Woo-Sik;Ahn, Byeong-Rip
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1273-1274
    • /
    • 2007
  • In this paper, a Optical Voltage Transformer has been designed and fabricated to improve temperature stability caused by materials properties and insulation in measuring system, using single crystal $Bi_{12}SiO_{20}$ as Pockels effect cells for Gas Insulated Switchgear[GIS] System. LD[wavelength: 850nm] was used as optical source, InGaAs as optical detector to measure optical power, Polarizing Beam Splitter as Polarizer and Analyzer, and Multi-mode Optical-fiber[62.5/$125{\mu}m$] as Light transmission line. OPT was assembled in order to pockels effect, and adopted direct electric field type. The linearity of OPT maintains variation for applied voltage range from 100V - 3000V during the test of electric property, As the temperature was changed from $25^{\circ}C$ to $60^{\circ}C$. the result of this study shows that characteristics of OPT are good, and it can be reflected for practical optical sensors in GIS system.

  • PDF

Analysis of Polarization Properties of Optical Isolator for Fiber Laser

  • Kim, Tae-Gon;Cheon, Min-Woo;Park, Yong-Pil;Cho, Kyung-Jae;Kang, Sung-Hak
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.241-244
    • /
    • 2011
  • An isolator transmits light in the forward direction and blocks light from passing in the reverse direction. It is regarded an essential optical component in medical, industrial, and research lasers for blocking reflection beams that cause optical damage and noise. It is also used as a communicative light intensifier to expand the lifespan of devices and enhance transmission quality. This study analyzed the characteristics of the core components in the construction of a polarization-independent isolator, namely, the walk-off polarizer and the Faraday rotator. Measurement of the extinction ratio of the resultant walk-off polarizer revealed that the ratio between the vertical and horizontal rays was 1,050:1 with a laser output of 0.032 W and 1,010:1 with a laser output of 2.68 W, thus presenting ratios similar to 1,000:1. In addition, the walk-off polarizer and Faraday rotator constructed in this study were used to compare output changes according to changes in power of input light and to check the penetration ratio. Results from the study presented variations in output value according to changes in power of input light. However, the average penetration ratio remained relatively consistent (~81.4%).

Nano imprinting lithography fabrication for photonic crystal waveguides (나노 임프린트 공정에 의한 광자결정 도파로 제조공정)

  • Jung Une-Teak;Kim Chang-Soek;Jeong Myung-Yung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.498-501
    • /
    • 2005
  • Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for manipulation of light. The existence of a photonic bandgap, a frequency range in which propagation of light is prevented in all direction, makes photonic crystal very useful in application where spatial localization of light is required for waveguide, beam splitter, and cavity. But fabrication of 3 dimensional photonic crystal is still difficult process. a concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air, and perforated with 2 dimensional lattice of hole. We show that the polymer slabs suspended in air with triangular lattice of air hole can exhibit the in-plane photonic bandgap for TE-like modes. The fabrication of Si master with pillar structure using hot embossing process was investigated for 2 dimensional low-index-contrast photonic crystal waveguide.

  • PDF

Fabrication of A 3-facet Mirror Using the LIGA Process (LIGA 공정을 이용한 삼면반사체 제작)

  • Oh, Dong-Young;Jung, Dong-Kwan;Park, Noh Y.;Chang, Suk-Sang;Lee, Seung-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.172-179
    • /
    • 2000
  • In this paper a technology for the fabrication of the oblique structure using the LIGA process will be presented. The fabricated microstructure is a tetrahedral 3- facet mirror. The mirror has an equilateral triangular base of hundreds ${\mu}m$ length mirror-like three side-facets inclined to the base at 45$^{\circ}$ and knife edges. Two regular triangles of 45$^{\circ}$ and tan-12. After development the shaded part of the PMMA the tetrahedral mirror remains, The completed mirror shows excellent aspects of mirror-like facets and knife-edges. By controlling the gap between the mask and the substrate the size of mirror easily can be changed. This mirror would be used as a laser beam splitter for the feedback control of the HDD slider.

  • PDF

Measurements of the Trajectories of Moving Objects with Video System and Image Matching (비디오 시스템과 영상매칭에 의한 운동물체의 거동측정)

  • 이창경;조우석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.331-341
    • /
    • 2002
  • In order to extract 3-dimensional information from 2-D image, stereo images are prerequisite. Moreover, for the measurement of moving objects, the synchronized sequential stereo images have to be captured and image matching should be implemented for determining the location of moving objects. In this research, a simple method computing 3-dimensional coordinates from sequential images of moving objects was implemented. The sequential stereo images were captured by a video camera with a beam splitter. Once video images were digitalized by frame grabber, the interest points were extracted and matched in each stereo image, and the coordinates of center of them are calculated using weighted average method. Then, 3-dimensional coordinates of moving objects were computed by DLT algorithms.

Measurement of the 3-Dimensional Shapes of Specular Objects by Using Double Pass Retroreflection (재귀반사 특성을 이용한 경면물체의 3차원 형상 측정)

  • Park, W.S.;Ryu, Y.K.;Cho, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.64-72
    • /
    • 1996
  • This paper is aimed to develop an optical method for measuring 3-dimensional shapes of specular objects having curved surfaces. The existing methods measuring the shapes of specular objects have several common disadvantages: they may not work properly if the surface is highly specular like mirror surface or if the reflectance property is not uniform over the surface. And, they often require the a priori knowledege about the surface reflectance. To overcome these disadvantages, the measurement using double pass retroreflection method is proposed in this paper. For this measurement principle, an experimental measuring system is designed and prepared which is composed of a galvanometer scanner, a beam splitter, a laser source, a CCD camera, and a reflector made of retroreflective material. To verify the effectiveness of the measurement system a series of experiments are performaed for various specular objects. The results observed from the experiments show that the developed optical sensing system can be an effective mean of measuring the 3-D shapes of specular objects.

  • PDF

Fabrication of Planar Type Optical Waveguide for the Application of Biosensor and Detection Characteristics of Staphylococcus Aureus (바이오센서용 평판형 광도파로 센서 제작 및 황색포도상구균 검출 특성)

  • Kim, Jun-Hyong;Yang, Hoe-Young;Yu, Chong-Hee;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.223-223
    • /
    • 2009
  • In this paper, designed and simulated Power Splitter (PS) integrated Mach-Zehnder interferometer (MZI) based planar type optical waveguide devices (which is called here a PS-MZI). The PS-MZI optical waveguide sensor was preceded by a Y-junction, which splits the input power between the sensor, and a reference branch, to minimize the effect of optical power variations. The PS-MZI optical waveguide sensor induced changing phases of the incident beam, which had fallen upon the waveguide through computer simulation, according to the small changes in the index of refraction, thus beam intensity was changed. The waveguide were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The fabrication of PS-MZI optical waveguide sensor was performed by a conventional planar lightwave circuit (PLC) fabrication process. The PS-MZI optical waveguide that was fabricated to be applied as a biosensor revealed a low insertion loss and a low polarization-dependent loss. After having etched the over-clad at the sensor part in the MZI optical waveguide that was fabricated, Ti deposition was made on the adhesion layer, and then Au thin-film deposition was carried out thereon. In addition, its optical properties were measured by having changed the index of refraction oil at the sensing part of the MZI. To apply the planar type PS-MZI optical waveguide as a biosensor, a detection test for Staphylococcus aureus was conducted according to changes in concentration, having adopted Ti-alkoxide as ligand. The detection result of the S. aureus by the PS-MZI optical waveguide sensor was possible to the level of $10^1$ CFU/ml.

  • PDF

Fabrication of Fluorescent Oxygen Sensor Probe Module Based on Planner Lightwave Circuits using UV Imprint Lithography (UV 임프린트 공정을 이용한 평면 광회로 기반 형광 산소 센서 프로브 모듈 제작)

  • Ahn, Ki Do;Oh, Seung hun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.37-41
    • /
    • 2018
  • This paper presents the integrated fluorescent oxygen sensor probe module based on planner lightwave circuits using UV imprint lithography. The oxygen sensor system is consisted of the optical source part, optical detector part and optical sensing probe part to be composed of the planner lightwave circuit and oxygen sensitive thin film layer. Firstly, we optimally designed the planner lightwave circuit with asymmetric $1{\times}2$ beam splitter using beam propagation method. Then, we fabricated the planner lightwave circuits using UV imprint lithography process. This planner lightwave circuits transmitted the optical power with 76% efficiency and the fluorescence signal with 70% efficiency. The oxygen sensitive thin film layer is coated on the end face of planner lightwave circuit. The oxygen sensor system using this sensor probe module with planner lightwave circuit could measure the concentration with 0.3% resolution from 0% to 20% gas range. This optical oxygen sensor probe module make it possible to compact, simple and cheap measurement system.

Optical Fiber Daylighting System Combined with LED Lighting and CPV based on Stepped Thickness Waveguide for Indoor Lighting

  • Vu, Ngoc Hai;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.488-499
    • /
    • 2016
  • We present a design and optical simulation of a cost-effective hybrid daylighting/LED system composed of mixing sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting. In this approach, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The proposed sunlight collector consists of a Fresnel lens array. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. The visible rays passing through the beam splitters are coupled to a stepped thickness waveguide (STW) by tilted mirrors and confined by total internal reflection (TIR). LEDs are integrated at the end of the STW to improve the lighting quality. LEDs’ light and sunlight are mixed in the waveguide and they are coupled into an optical fiber bundle for indoor illumination. An optical sensor and lighting control system are used to control the LED light flow to ensure that the total output flux for indoor lighting is a fixed value when the sunlight is inadequate. The daylighting capacity was modeled and simulated with a commercial ray tracing software (LighttoolsTM). Results show that the system can achieve 63.8% optical efficiency at geometrical concentration ratio of 630. A required accuracy of sun tracking system achieved more than ±0.5o . Therefore, our results provide an important breakthrough for the commercialization of large scale optical fiber daylighting systems that are faced with challenges related to high costs.