• Title/Summary/Keyword: Beam parameters

Search Result 2,164, Processing Time 0.041 seconds

Diagnosis of Submerged Fixed Bioreactor using Radioisotope Tracer (방사성동위원소 추적자를 이용한 침적형 고정 미생물 반응조 진단)

  • Jung, Sunghee;Jin, Joonha;Lee, Myunjoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1149-1158
    • /
    • 2000
  • A radioisotope tracer experiment was carried out in the submerged fixed bioreactor of a dye wastewater treatment facility to evaluate the flow behaviors in the 6 compartments of the reactor and to find any possible factors which may affect to the efficiency of the process. Approximately 20mCi of $^{131}I$ was injected into the system as a tracer and 8 radiation detectors were placed in the 6 compartments and at the inlet and the outlet of the system to measure the change of the tracer concentration with time. Using the Perfect Mixers in Series Model the measured data were analyzed to calculate the mean residence time and the characteristic parameters of the flow in the system. The mean residence time of the system was calculated as 17 hours which is 76% of the designed MRT(22.3hr). Among the 6 compartments, the first compartment doesn't show the characteristic of perfect mixer, whereas, the other 5 compartments are working as perfect mixers. The output response of the first compartment is fit well with the simulated output of a model which consists of a perfect mixer with an exchange volume. It indicates that a quarter of the tank volume is working as a dead volume or an exchange volume. From the measured residence time distributions in each compartment, the appropriate sampling times after the change of operational condition of the electron beam accelerator were evaluated.

  • PDF

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

Evaluation of the hybrid-dynamic conformal arc therapy technique for radiotherapy of lung cancer

  • Kim, Sung Joon;Lee, Jeong Won;Kang, Min Kyu;Kim, Jae-Chul;Lee, Jeong Eun;Park, Shin-Hyung;Kim, Mi Young;Lee, Seoung-Jun;Moon, Soo-Ho;Ko, Byoung-Soo
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.241-247
    • /
    • 2018
  • Purpose: A hybrid-dynamic conformal arc therapy (HDCAT) technique consisting of a single half-rotated dynamic conformal arc beam and static field-in-field beams in two directions was designed and evaluated in terms of dosimetric benefits for radiotherapy of lung cancer. Materials and Methods: This planning study was performed in 20 lung cancer cases treated with the VERO system (BrainLAB AG, Feldkirchen, Germany). Dosimetric parameters of HDCAT plans were compared with those of three-dimensional conformal radiotherapy (3D-CRT) plans in terms of target volume coverage, dose conformity, and sparing of organs at risk. Results: HDCAT showed better dose conformity compared with 3D-CRT (conformity index: 0.74 ± 0.06 vs. 0.62 ± 0.06, p < 0.001). HDCAT significantly reduced the lung volume receiving more than 20 Gy (V20: 21.4% ± 8.2% vs. 24.5% ± 8.8%, p < 0.001; V30: 14.2% ± 6.1% vs. 15.1% ± 6.4%, p = 0.02; V40: 8.8% ± 3.9% vs. 10.3% ± 4.5%, p < 0.001; and V50: 5.7% ± 2.7% vs. 7.1% ± 3.2%, p < 0.001), V40 and V50 of the heart (V40: 5.2 ± 3.9 Gy vs. 7.6 ± 5.5 Gy, p < 0.001; V50: 1.8 ± 1.6 Gy vs. 3.1 ± 2.8 Gy, p = 0.001), and the maximum spinal cord dose (34.8 ± 9.4 Gy vs. 42.5 ± 7.8 Gy, p < 0.001) compared with 3D-CRT. Conclusions: HDCAT could achieve highly conformal target coverage and reduce the doses to critical organs such as the lung, heart, and spinal cord compared to 3D-CRT for the treatment of lung cancer patients.

In-Plane Extensional Vibration Analysis of Asymmetric Curved Beams with Linearly Varying Cross-Section Using DQM (미분구적법(DQM)을 이용한 단면적이 선형적으로 변하는 비대칭 곡선보의 내평면 신장 진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2019
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has results in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have traditionally been obtained by the standard finite difference. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method(DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as excessive use of storage due to conditions of complex geometry and loading. In this study, the in-plane extensional vibration for asymmetric curved beams with linearly varying cross-section is analyzed using the DQM. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results are compared with the result by other methods for cases in which they are available. According to the analysis of the solutions, the DQM, used only a limited number of grid points, gives results which agree very well with the exact ones.

Species Composition of Benthic Macroinvertebrates and Water Evaluation Using Their Species in the Songji River in Korea (한국 송지천에서 저서성대형무척추동물의 종조성과 이를 이용한 수질 평가)

  • Lee, Byeong Ryong;Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.580-587
    • /
    • 2019
  • Benthic macroinvertebrates were analyzed in March, June, September, and December 2018 to evaluate water quality in the Songji River in Sacheon-ci, Korea. The identified benthic macroinvertebrates included 447 individuals belonging to 20 species, 18 families, 12 orders, 5 classes, and 3 phyla. Various ecological parameters were estimated for evaluation of the river status. The total ecological score of benthic macroinvertebrate community (TESB) varied from 17 (Station D) to 41 (Station A). The saprobic index and ecological score of benthic macroinvertebrate community (ESB) for the evaluation of river status revealed a water quality evaluation at Station A of II (oligosaprobic), indicating some satisfactory water protection. The benthic macroinvertebrate index (BMI) varied from 25.207 (Site C) to 39.348 (Station A). The evaluation of the river status at Stations C and D was polysaprobic, and sensitive taxa were absent. The mean Shannon-Weaver index (H') of diversity varied from 1.288 (Station D) to 2.250 (Station A). The classification of saprobity based on H' was ${\beta}$-mesosaprobic at Station A and ${\alpha}$-mesosaprobic at the other stations. The value of geometric density was varied from 1.229 (Station A) to 2.071 (Station D), with a mean of 1.582. An artificial load is being added to this river. One of load is the rectal river construction which flows straight through the river physics. Thus, the environment of living organisms deteriorates due to insufficient water. In order to secure the quality of the Songji River and a good environmental habitat, several low-height stepped-beam structures are required.

Assessment of Dosimetric Leaf Gap According to Measuring Active Volume of Detector (검출기 측정 용적에 따른 Dosimetric Leaf Gap 변화와 정확성 검증에 대한 연구)

  • Dae-Hyun, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.863-870
    • /
    • 2022
  • DLG (Dosimetric Leaf Gap) and transmission factor are important parameters of MLC modeling in treatment planning system. In this study, DLG and transmission factor of HD-MLC were measured using detector with different measuring volumes, and the accuracy of the treatment plans was evaluated according to the DLG values. DLG was measured using the dynamic sweeping gap method with Semiflux3D and MicroDiamond detectors. Then, 10 radiation treatment plans were generated to optimize the DLG value and compared with the measurement results. Photon energies 6, 8, 10 MV, the DLG measured by Semiflux3D were 0.76, 0.83, and 0.85 mm, and DLG measured by MicroDiamond were 0.78, 0.86, and 0.9 mm. All plans were measured by portal dosimetry and analyzed using Gamma Evaluation. In the 6 MV photon beams, the average gamma passing rate were 94.3% and 98.4% for DLG 0.78 mm and 1.15 mm. In the 10 MV photon beam, the average gamma passing rate were 91.2% and 97.6% for DLG 0.9 mm and 1.25 mm. HD-MLC needs accurate modeling in the treatment planning system. DLG could be used measured data using small volume detector. However, for better radiation therapy, DLG should be optimized at the commissioning stage of LINAC.

Running Safety and Ride Comfort Prediction for a Highspeed Railway Bridge Using Deep Learning (딥러닝 기반 고속철도교량의 주행안전성 및 승차감 예측)

  • Minsu, Kim;Sanghyun, Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.375-380
    • /
    • 2022
  • High-speed railway bridges carry a risk of dynamic response amplification due to resonance caused by train loads, and running safety and riding comfort must therefore be reviewed through dynamic analysis in accordance with design codes. The running safety and ride comfort calculation procedure, however, is time consuming and expensive because dynamic analyses must be performed for every 10 km/h interval up to 110% of the design speed, including the critical speed for each train type. In this paper, a deep-learning-based prediction system that can predict the running safety and ride comfort in advance is proposed. The system does not use dynamic analysis but employs a deep learning algorithm. The proposed system is based on a neural network trained on the dynamic analysis results of each train and speed of the railway bridge and can predict the running safety and ride comfort according to input parameters such as train speed and bridge characteristics. To confirm the performance of the proposed system, running safety and riding comfort are predicted for a single span, straight simple beam bridge. Our results confirm that the deck vertical displacement and deck vertical acceleration for calculating running safety and riding comfort can be predicted with high accuracy.

Manufacturing and testing of flat-type divertor mockup with advanced materials

  • Nanyu Mou;Xiyang Zhang;Qianqian Lin;Xianke Yang;Le Han;Lei Cao;Damao Yao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2139-2146
    • /
    • 2023
  • During reactor operation, the divertor must withstand unprecedented simultaneous high heat fluxes and high-energy neutron irradiation. The extremely severe service environment of the divertor imposes a huge challenge to the bonding quality of divertor joints, i.e., the joints must withstand thermal, mechanical and neutron loads, as well as cyclic mode of operation. In this paper, potassium-doped tungsten (KW) is selected as the plasma facing material (PFM), oxygen-free copper (OFC) as the interlayer, oxide dispersion strengthened copper (ODS-Cu) alloy as the heat sink material, and reduced activation ferritic/martensitic (RAFM) steel as the structural material. In this study, a vacuum brazing technology is proposed and optimized to bond Cu and ODS-Cu alloy with the silver-free brazing material CuSnTi. The most appropriate brazing parameters are a brazing temperature of 940 ℃ and a holding time of 15 min. High-quality bonding interfaces have been successfully obtained by vacuum brazing technology, and the average shear strength of the as-obtained KW/Cu and ODS-Cu alloy joints is ~268 MPa. And a fabrication route for manufacturing the flat-type divertor target based on brazing technology is set. For evaluating the reliability of the fabrication technologies under the reactor relevant condition, the high heat flux test at 20 MW/m2 for the as-manufactured flat-type KW/Cu/ODS-Cu/RAFM mockup is carried out by using the Electron-beam Material testing Scenario (EMS-60) with water cooling. This paper reports the improved vacuum brazing technology to connect Cu to ODS-Cu alloy and summarizes the production route, high heat flux (HHF) test, the pre and post non-destructive examination, and the surface results of the flat-type KW/Cu/ODS-Cu/RAFM mockup after the HHF test. The test results demonstrate that the mockup manufactured according to the fabrication route still have structural and interfacial integrity under cyclic high heat loads.

Comparison Radiation Dose of Z-Axis Automatic Tube Current Modulation Technique with Fixed Tube Current Multi-Detector Row CT Scanning of Lower Extremity Venography (하지 정맥조영술 MDCT에서 고정 관전류 기법과 Z-축 자동 관전류 변동 제어에 의한 선량 비교)

  • Yoo, Beong-Gyu;Lee, Jong-Seok;Jang, Keun-Jo;Jeon, Sang-Hwan;Kim, Yong-Soo;Kweon, Dae-Cheol
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.3
    • /
    • pp.123-133
    • /
    • 2007
  • Z-axis automatic tube current modulation technique automatically adjusts tube current based on size of body region scanned. The purpose of the current study was to compare noise, and radiation dose of multi-detector row CT (MDCT) of lower extremity performed with Z-axis modulation technique of automatic tube current modulation with manual selection fixed tube current. Fifty consecutive underwent MDCT venography of lower extremity with use of a MDCT scanner fixed tube current and Z-axis automatic tube current modulation technique (10, 11 and 12 HU noise index, $70{\sim}450\;mA$). Scanning parameters included 120 kVp, 0.5 second gantry rotation time, 1.35:1 beam pitch, and 1 mm reconstructed section thickness. For each subject, images obtained with Z-axis modulation were compared with previous images obtained with fixed tube current (200, 250, 300 mA) and with other parameters identical. Images were compared for noise at five levels: iliac, femoral, popliteal, tibial, and peroneal vein of lower extremity. Tube current and gantry rotation time used for acquisitions at these levels were recorded. All CT examinations of study and control groups were diagnostically acceptable, though objective noise was significantly more with Z-axis automatic tube current modulation. Compared with fixed tube current, 2-axis modulation resulted in reduction of CTDIvol (range, $-6.5%{\sim}-35.6%$) and DLP (range, $-0.2%{\sim}-20.2%$). Compared with manually selected fixed tube current, 2-axis automatic tube current modulation resulted in reduced radiation dose at MDCT of lower extremity venography.

Reproducibility of Applicator Position with High dose rate brachytherapy in uterine cervical cancer (자궁경부암 환자의 근접치료시 재현성 평가)

  • Kim Jong-Hwa;Son Jung-Hae;Jung Chil;Kim Mi-Hwa
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.29-33
    • /
    • 2003
  • I. Purpose Brachytherapy is the main component in treatment of patients with uterine cervical cancer. The reproducibility of applicator position in the same patient at repeated treatments was very important for accurate dose delivery. It was aimed to evaluate the change of applicator location between each high dose rate(HDR) brachytherapy insertion in the patients with uterine cervical cancer. II. Materials and Methods From January 1999 to October 2001, total 52 patients were treated with external beam radiotherapy and HDR brachytherapy (Microselectron, Nucletron). During six to seven times of brachytherapy, all patients had three treatment plans. From the orthogonal radiographs, we measured the following variables; height from upper border of pubic bone to os (HPO), distance from sacral promontory to tip of tandem (DST), distance from coccyx to os (DCO), distance from tip of right ovoid to os (DRO), distance from tip of left ovoid to os (DLO), and distance from center of the first tandem source to ovoid (DTO). To evaluate the reproducibility of applicator position, it was calculated the standard deviation of differences between three insertions for the 7 parameters in each patient. III. Results The ranges of standard deviations of interfractional differences for the variables were as follows. 1)HPO : $0{\sim}0.79cm$ 2)DST : $0{\sim}0.9cm$ 3)DCO : $0.06{\sim}0.76cm$ 4)DRO : $0{\sim}0.53cm$ 5)DLO : $0{\sim}0.45cm$ 6) DTO $0{\sim}0.36cm$ IV. Conclusions There was some change in applicator position on repeated implants in our study. But variation of the interfractional differences was minimal; in all parameters, there were less than 1 cm. We are continued to try for reducing the geometric variation between each procedure.

  • PDF