• 제목/요약/키워드: Beam element

검색결과 2,847건 처리시간 0.024초

대면적 전자빔 폴리싱 공정 시 발생하는 온도 분포 유한요소해석 연구 (Finite Element Analysis of Large-Electron-Beam Polishing-Induced Temperature Distribution)

  • 김지수;김진석;강은구;이석우;박형욱
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.931-936
    • /
    • 2013
  • Recently, the use of large-electron-beam polishing for polishing complex metal surfaces has been proposed. In this study, the temperature induced by a large electron beam was predicted using the heat transfer theory. A finite element (FE) model of a continuous wave (CW) electron beam was constructed assuming Gaussian distribution. The temperature distribution and melting depth of an SUS304 sample were predicted by changing electron-beam polishing process parameters such as energy density and beam velocity. The results obtained using the developed FE model were compared with experimental results for verifying the melting depth prediction capability of the developed FE model.

Effective modeling of beams with shear deformations on elastic foundation

  • Gendy, A.S.;Saleeb, A.F.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.607-622
    • /
    • 1999
  • Being a significant mode of deformation, shear effect in addition to the other modes of stretching and bending have been considered to develop two finite element models for the analysis of beams on elastic foundation. The first beam model is developed utilizing the differential-equation approach; in which the complex variables obtained from the solution of the differential equations are used as interpolation functions for the displacement field in this beam element. A single element is sufficient to exactly represent a continuous part of a beam on Winkler foundation for cases involving end-loadings, thus providing a benchmark solution to validate the other model developed. The second beam model is developed utilizing the hybrid-mixed formulation, i.e., Hellinger-Reissner variational principle; in which both displacement and stress fields for the beam as well as the foundation are approxmated separately in order to eliminate the well-known phenomenon of shear locking, as well as the newly-identified problem of "foundation-locking" that can arise in cases involving foundations with extreme rigidities. This latter model is versatile and indented for utilization in general applications; i.e., for thin-thick beams, general loadings, and a wide variation of the underlying foundation rigidity with respect to beam stiffness. A set of numerical examples are given to demonstrate and assess the performance of the developed beam models in practical applications involving shear deformation effect.

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • 제25권5호
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

Nonlinear behavior of connections in RCS frames with bracing and steel plate shear wall

  • Ghods, Saeedeh;Kheyroddin, Ali;Nazeryan, Meissam;Mirtaheri, Seyed Masoud;Gholhaki, Majid
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.915-935
    • /
    • 2016
  • Steel systems composed of Reinforced Concrete column to Steel beam connection (RCS) have been raised as a structural system in the past few years. The optimized combination of steel-concrete structural elements has the advantages of both systems. Through beam and through column connections are two main categories in RCS systems. This study includes finite-element analyses of mentioned connection to investigate the seismic performance of RCS connections. The finite element model using ABAQUS software has been verified with experimental results of a through beam type connection tested in Taiwan in 2005. According to verified finite element model a parametric study has been carried out on five RCS frames with different types of lateral restraint system. The main objective of this study is to investigate the forming of plastic hinges, distribution of stresses, ductility and stiffness of these models. The results of current research showed good performance of composite systems including concrete column-steel beam in combination with steel shear wall and bracing system, are very desirable. The results show that the linear stiffness of models with X bracing and steel shear wall increase remarkably and their ultimate strength increase about three times rather than other RCS frames.

다수의 층상균열이 내재하는 보의 진동해석 (Vibration Analysis of a Beam Having n Through-the-width Splits)

  • 이명훈;신영재;김재호;황정기
    • 한국소음진동공학회논문집
    • /
    • 제12권5호
    • /
    • pp.330-337
    • /
    • 2002
  • A frequency equation of beam subjected to the axial load and having ηthrough-the-width-splits is developed. The beam comprises of beam elements that are split into the upper and the lower part, and non-split beam elements. Equations of motion of each beam element are non-dimensionalized with respect to length. The frequency equation of beam is derived from that of each beam element, which satisfies the displacement of the longitudinal and transverse vibration and the boundary conditions between the beam elements. Numerical simulation and experimental work for the beam having several split beam elements are carried out to demonstrate the analytical development and its validity. The experimental results are in good agreement with those of the present frequency equation. The relationships between the split beam width and natural frequencies, and also the relationships between number of split and natural frequencies, in case that the total beam split length is same. are discussed.

수동감쇠 적층보의 진동해석을 위한 스펙트럴요소법의 적용 (Application of Spectral Element Method for the Vibration Analysis of Passive Constrained Layer Damping Beams)

  • 송지훈;홍석윤
    • 한국음향학회지
    • /
    • 제28권1호
    • /
    • pp.25-31
    • /
    • 2009
  • 본 논문에서는 수동감쇠 적층보에 대한 스펙트럴요소법을 유도하였다. 수동감쇠 적층보의 중심층인 점탄성층은 주파수에 따라 값이 변하는 복소 계수를 가지고 있다. 그래서 점탄성층의 주파수 종속적인 복소 계수를 계산하기 위하여, 스펙트럴요소법을 주파수축 상에서 파동해로부터 얻은 엄밀해를 기반으로 하는 동적형상함수를 사용하여 유도하였다. 유도된 수동감쇠 적층보에 대한 스펙트럴요소의 신뢰성과 정밀도를 검증하기 위하여 스펙트럴요소법과 유한요소법을 사용하여 구한 주파수응답함수와 동적응답을 비교하였다. 비교 결과 수동감쇠 적층보에 대한 스펙트럴요소가 유한요소에 비해서 보다 신뢰성 있는 결과를 제공하는 것을 알 수 있었다.

고차 혼합 곡선보 요소에 의한 아치의 자유진동해석 (Free Vibration Analysis of Arches Using Higher-Order Mixed Curved Beam Elements)

  • 박용국;김진곤
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.18-25
    • /
    • 2006
  • The purpose of this research work is to demonstrate a successful application of hybrid-mixed formulation and nodeless degrees of freedom in developing a very accurate in-plane curved beam element for free vibration analysis. To resolve the numerical difficulties due to the spurious constraints, the present element, based on the Hellinger-Reissner variational principle and considering the effect of shear deformation, employed consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees. The stress parameters were eliminated by the stationary condition, and the nodeless degrees were condensed by Guyan Reduction. Several numerical examples indicated that the property of the mass matrix as well as that of the stiffness matrix have a great effect on the numerical performance. The element with consistent mass matrix produced best results on convergence and accuracy in the numerical analysis of Eigenvalue problems. Also, the higher-order mixed curved beam element showed a superior numerical behavior for the free vibration analyses.

Deflection calculation method on GFRP-concrete-steel composite beam

  • Tong, Zhaojie;Song, Xiaodong;Huang, Qiao
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.595-606
    • /
    • 2018
  • A calculation method was presented to calculate the deflection of GFRP-concrete-steel beams with full or partial shear connections. First, the sectional analysis method was improved by considering concrete nonlinearity and shear connection stiffness variation along the beam direction. Then the equivalent slip strain was used to take into consideration of variable cross-sections. Experiments and nonlinear finite element analysis were performed to validate the calculation method. The experimental results showed the deflection of composite beams could be accurately predicted by using the theoretical model or the finite element simulation. Furthermore, more finite element models were established to verify the accuracy of the theoretical model, which included different GFRP plates and different numbers of shear connectors. The theoretical results agreed well with the numerical results. In addition, parametric studies using theoretical method were also performed to find out the effect of parameters on the deflection. Based on the parametric studies, a simplified calculation formula of GFRP-concrete-steel composite beam was exhibited. In general, the calculation method could provide a more accurate theoretical result without complex finite element simulation, and serve for the further study of continuous GFRP-concrete-steel composite beams.

The use of eccentric beam elements in the analysis of slab-on-girder bridges

  • Chan, Tommy H.T.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.85-102
    • /
    • 1999
  • With the advent of computer, the finite element method has become a most powerful numerical method for structural analysis. However, bridge designers are reluctant to use it in their designs because of its complex nature and its being time consuming in the preparation of the input data and analyzing the results. This paper describes the development of a computer based finite element model using the idea of eccentric beam elements for the analysis of slab-on-girder bridges. The proposed method is supported by a laboratory test using a reinforced concrete bridge model. Other bridge analytical schemes are also introduced and compared with the proposed method. The main aim of the comparison is to prove the effectiveness of the shell and eccentric beam modelling in the studies of lateral load distribution of slab-on-girder bridges. It is concluded that the proposed finite element method gives a closer to real idealization and its developed computer program, SHECAN, is also very simple to use. It is highly recommended to use it as an analytical tool for the design of slab-on-girder bridges.