• 제목/요약/키워드: Beam element

검색결과 2,847건 처리시간 0.024초

Damped dynamic responses of a layered functionally graded thick beam under a pulse load

  • Asiri, Saeed A.;Akbas, Seref D.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.713-722
    • /
    • 2020
  • This article aims to illustrate the damped dynamic responses of layered functionally graded (FG) thick 2D beam under dynamic pulse sinusoidal load by using finite element method, for the first time. To investigate the response of thick beam accurately, two-dimensional plane stress problem is assumed to describe the constitutive behavior of thick beam structure. The material is distributed gradually through the thickness of each layer by generalized power law function. The Kelvin-Voigt viscoelastic constitutive model is exploited to include the material internal damping effect. The governing equations are obtained by using Lagrange's equations and solved by using finite element method with twelve -node 2D plane element. The dynamic equation of motion is solved numerically by Newmark implicit time integration procedure. Numerical studies are presented to illustrate stacking sequence and material gradation index on the displacement-time response of cantilever beam structure. It is found that, the number of waves increases by increasing the graduation distribution parameter. The presented mathematical model is useful in analysis and design of nuclear, marine, vehicle and aerospace structures those manufactured from functionally graded materials (FGM).

Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Khan, Imran
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.283-291
    • /
    • 2020
  • The present paper researches post-buckling behaviors of geometrically imperfect concrete beam resting on elastic foundation reinforced with graphene oxide powders (GOPs) based on finite element method (FEM). Distribution of GOPs are considered as uniform and linearly graded through the thickness. Geometric imperfection is considered as first buckling mode shape of the beam, the GOP reinforced beam is rested in initial position. The material properties of GOP reinforced composite have been calculated via employment of Halpin-Tsai micromechanical scheme. The provided refined beam element verifies the shear deformation impacts needless of any shear correction coefficient. The post-buckling load-deflections relations have been calculated via solving the governing equations having cubic non-linearity implementing FEM. Obtained findings indicate the importance of GOP distributions, GOP weight fraction, matrix material, geometric imperfection, shear deformation and foundation parameters on nonlinear buckling behavior of GOP reinforced beam.

열린 균열이 있는 보의 효율적 모델링 (An efficient modeling method for open cracked beam structures)

  • 김만달;최성환;홍성욱;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.725-730
    • /
    • 2002
  • This paper presents an efficient modeling method for open cracked beam structures. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of open cracks. The proposed method adopts the exact dynamic element method (EDEM) to avoid the difficulty and numerical errors in association with re-meshing the structure. The proposed method is rigorously compared with a commercial finite element code. Experiments are also performed to validate the proposed modeling method. Finally, a diagnostic scheme for open cracked beam structures is proposed and demonstrated through a numerical example.

  • PDF

A 3D co-rotational beam element for steel and RC framed structures

  • Long, Xu;Tan, Kang Hai;Lee, Chi King
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.587-613
    • /
    • 2013
  • A 3-node 3D co-rotational beam element using vectorial rotational variables is employed to consider the geometric nonlinearity in 3D space. To account for shape versatility and reinforced concrete cross-sections, fibre model has been derived and conducted. Numerical integration over the cross-section is performed, considering both normal and shear stresses. In addition, the derivations associated with material nonlinearity are given in terms of elasto-plastic incremental stress-strain relationship for both steel and concrete. Steel reinforcement is treated as elasto-plastic material with Von Mises yield criterion. Compressive concrete behaviour is described by Modified Kent and Park model, while tensile stiffening effect is taken into account as well. Through several numerical examples, it is shown that the proposed 3D co-rotational beam element with fibre model can be used to simulate steel and reinforced concrete framed structures with satisfactory accuracy and efficiency.

회전하는 보의 유한요소해석을 위한 유리형상함수의 확장 (Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams)

  • 김용우;정재호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.573-578
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfies the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfies the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beam.

  • PDF

쉐도우마스크의 열변형과 전자빔의 오차 해석 (Analysis of Thermal Deformations of Shadow Mask and Electronic Beam Mislanding)

  • 김현규;박영호;김상기;임세영
    • 전자공학회논문지B
    • /
    • 제31B권6호
    • /
    • pp.81-90
    • /
    • 1994
  • Finite element analysis is performed for transient thermal deformation of a shadow mask inside the Braun tube and the landing shift or mislanding of the electronic beam is calclated. The shadow mask has numerous slits through which the electronic beams are guided to land on the designed phosphor. Its thermal deformations therefore cause the mislanding of the electronic beam and result in decolorization of a screen. For realistic finite element analysis, firstly the effective thermal conductivity and the effective elastric modulus are calculated, and the shadow mask is modeled as shell without slits. Next the nonlinear finite element formulation is developed for transient heat transfer on the shadow mask, wherein thermal radiation is a major heat transfer mechanism. Analysis of the resulting thermoelastic deformations is followed, from which the mislanding of the electronic beam is obtained. The present finite element scheme may be efficiently used for thermal deformation design of a shadow mask.

  • PDF

강상자형 거더의 엄밀한 단면변형(Distortion) 해석 (Exact Distortional Deformation Analysis of Steel Box Girders)

  • 진만식;곽태영;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.43-50
    • /
    • 2002
  • Main goal of this study is to develop MATLAB programming for exact analysis of distortional deformation of the straight box girder. For this purpose, a theory for distortional deformation theory is firstly summarized and then a BEF (Beam on Elastic Foundation) theory is presented using analogy of the corresponding variables. Finally, the governing equation of the beam-column element on elastic foundation is derived. An element stiffness matrix of the beam element is established via a generalized linear eigenvalue problem. In order to verify the efficiency and accuracy of the element using exact dynamic stiffness matrix, buckling loads for the continuous beam structures with elastic foundation and distortional deformations of box girders are calculated.

  • PDF

균열이 있는 보의 모델링 및 동적 해석에 관한 연구 (A study on the Modeling and Dynamic Analysis of Cracked Beam Structures)

  • 홍성욱;김만달;이종원
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.197-204
    • /
    • 2003
  • This paper presents an efficient modeling and dynamic analysis method for open cracked beam structures. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed method adopts the exact dynamic element method (EDEM) to avoid the inconvenience and numerical errors in association with re-meshing the structural model with the crack position changed. The proposed modeling method is validated through a series of simulation and experiments. First, the proposed method is rigorously compared with a commercial finite element code. Then, two kinds of experiments are performed to validate the proposed modeling method. Finally, a diagnostic scheme fur open cracked beam structures is proposed and demonstrated through a numerical example.

The construction of second generation wavelet-based multivariable finite elements for multiscale analysis of beam problems

  • Wang, Youming;Wu, Qing;Wang, Wenqing
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.679-695
    • /
    • 2014
  • A design method of second generation wavelet (SGW)-based multivariable finite elements is proposed for static and vibration beam analysis. An important property of SGWs is that they can be custom designed by selecting appropriate lifting coefficients depending on the application. The SGW-based multivariable finite element equations of static and vibration analysis of beam problems with two and three kinds of variables are derived based on the generalized variational principles. Compared to classical finite element method (FEM), the second generation wavelet-based multivariable finite element method (SGW-MFEM) combines the advantages of high approximation performance of the SGW method and independent solution of field functions of the MFEM. A multiscale algorithm for SGW-MFEM is presented to solve structural engineering problems. Numerical examples demonstrate the proposed method is a flexible and accurate method in static and vibration beam analysis.

직교 이방성 재료 물성이 적용된 cantilever beam 형상의 FEM과 BEM에 의한 해석 결과에 대한 비교 연구 (A Comparative study of Finite Element Method and Boundary Element Method Analysis result of Cantilever Beam model by applying Orthotropic Material Properties)

  • 김동은;황영진;이석순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.730-735
    • /
    • 2007
  • This study is a comparison of the results of the orthropic material analysis at cantilever beam model using boundary element(BEM) method and finite element method(FEM). The program with the orthotropic material analysis was developed and applied to the examples in order to evaluate the accuracy of the programs. The examples shows that the results of the BEM is a good agreement with the ABAQUS results.

  • PDF