• Title/Summary/Keyword: Beam diameter

Search Result 654, Processing Time 0.03 seconds

Free vibration analysis of laminated composite beam under room and high temperatures

  • Cunedioglu, Yusuf;Beylergil, Bertan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.111-130
    • /
    • 2014
  • The aim of this study is to investigate the effects of the beam aspect ratio(L/h), hole diameter, hole location and stacking layer sequence ($[0/45/-45/90]_s$, $[45/0/-45/90]_s$ and $[90/45/-45/0]_s$) on natural frequencies of glass/epoxy perforated beams under room and high (40, 60, 80, and $100^{\circ}C$) temperatures for the common clamped-free boundary conditions (cantilever beam). The first three out of plane bending free vibration of symmetric laminated beams is studied by Timoshenko's first order shear deformation theory. For the numerical analyses, ANSYS 13.0 software package is utilized. The results show that the hole diameter, stacking layer sequence and hole location have important effect especially on the second and third mode natural frequency values for the short beams and the high temperatures affects the natural frequency values significantly. The results are presented in tabular and graphical form.

Finite Element Modeling of a Carbon Nanotube Actuator (탄소나노튜브 엑츄에이터의 설계에서의 유한요소모델링 기법)

  • 김정택;현석정;김철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.559-562
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

Estimation of material properties of carbon nanotube composite applying multi-scale method (다중스케일 기법을 이용한 카본나노튜브 복합재료의 물성치 계산)

  • Kim J.T.;Hyun S.J.;Kim Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.165-168
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

Validity assessment of aspect ratios based on Timoshenko-beam model: Structural design

  • Emad Ghandourah;Muzamal Hussain;Mohamed A. Khadimallah;Mashhour Alazwari;Mohamed R. Ali;Mohammed A. Hefni
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, Timoshenko-beam model is developed for the vibration of double carbon nanotubes. The resulting frequencies are gained for axial wave mode and length-to-diameter ratios. The natural frequency becomes more prominent for lower length-to-diameter ratios and diminished for higher ratios. The converse behavior is observed for axial wave mode with clamped-clamped and clamped-free boundary conditions. The frequencies of clamped-free are lower than that of clamped-clamped boundary condition. The eigen solution is obtained to extract the frequencies of double walled carbon nanotubes using Galerkin's method through axial deformation function. Computer softer MATLAB is used for formation of frequency values. The frequency data is compared with available literature and found to be in agreement.

A Scanning electron microscopic study of the dentinal tubule obliteration effect by the different irradiations of a pulsed Nd:YAG laser (Nd:YAG 레이저의 조사방법의 차이에 따른 상아세관 폐쇄효과에 관한 주사전자현미경적 연구)

  • Ko, Eun-Young;Kim, Song-Wook;Yum, Chang-Yup;Kim, Byoung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.829-844
    • /
    • 1997
  • Dentin hypersensitivity must be one of the most frequent postoperative complaints in periodontal patients. Obliterating the open dentinal tubules or decreasing the diameter of their orifices would, therefore, be an objective of treatment for hypersensitive teeth. The purpose of this study was to evaluate the effect of a pulsed Nd:YAG laser irradiation on obliteration of dentinal tubules and to determine any difference according to irradiation methods. The 45 posterior teeth that had been extracted due to periodontal disease were initially treated with tetracycline HCI(100 mg/ml, 4 min.) to remove the smear layer after root planing. The root surfaces were then irradiated by a pulsed Nd:YAG laser(EL.EN.EN060, Italy) by different laser beam spot size and different exposure condition: ${\cdot}$ group 1: irradiated group by small spot(beam diameter=1mm, lW, 2 sec) ${\cdot}$ group 2: irradiated group by large spot(beam diameter=10mm, 1W, 200 sec) ${\cdot}$ group 3: irradiated group by gradual increase of watt (from 0.3W to 1.0W), beam diameter=4mm ${\cdot}$ group 4: irradiated group by fixed watt(1.0 W), beam diameter=4mm ${\cdot}$ control group: no irradiation but root planing and tetracycline HCI conditioning only. Additionally, the specimens were retreated with tetracycline HCI(100mg/ml, 4min.) to evaluate the stability of obliteration effect by Nd:YAG laser. Specimens were examined under the scanning electron microscope(JEOL, JSM-840A, Japan). Photomicrographs were taken at ${\times}4,000$ magnification and were analyzed statistically. The results were as follows: l. Scanning electron micrographs of root surface treated by tetracycline HCI alone(control group) showed widened, funnel-shaped dentinal tubules, while those of the root surface irradiated by various methods showed partially or completely obliterated dentinal tubules and various surface alterations, eg, flat, multiple pitted, melted and resolidified surface at the same energy density. 2. There was no significant difference in the obliteration effect of dentinal tubules between group 1 and group 2, and between group 3 and group 4(p>0.05). 3. The obliteration effect of dentinal tubules by a Nd:YAG laser irradiation was relatively stable to tetracycline HCI. The results demonstrate that a pulsed Nd:YAG laser irradiation within 1.0W, regardless of irradiation methods, can obliterate dentinal tubules effectively.

  • PDF

Calculation of depth dose for irregularly shaped electron fields (부정형 전자선 조사면의 심부선량과 출력비의 계산)

  • Lee, Byoung-Koo;Lee, Sang-Rok;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.79-84
    • /
    • 2002
  • The main cause factor for effective the output, especially in small & irregular shaped field of electron beam therapy, are collimation system, insert block diameter and energy. In the absorption deose of treatment fields, we should consider the lateral build-up ratio (LBR), which the ratio of dose at a point at depth for a given circular field to the dose at the same point for a 'broad-field', for the same incident fluence and profile. The LBR data for a small circular field are used to extract radial spread of the pencil beam, ${\sigma}$, as a function of depth and energy. It's based on elementary pencil beam. We consider availability of the factor, ${\sigma}$, in the small & irregular fields electron beam treatment.

  • PDF

The Laser Peening Effect for Improving the Surface Properties of Metals (금속표면 특성향상을 위한 laser peening 효과)

  • Chung, Chin-Man;Baik, Sung-Hoon;Kim, Joung-Soo;Lee, Sang-Bae
    • Laser Solutions
    • /
    • v.11 no.3
    • /
    • pp.5-9
    • /
    • 2008
  • The effect of a laser peening on the surface residual stress of SUS 304 was investigated using a second harmonic Nd:YAG laser beam. The energy density and the diameter of the laser beam were $400mJ/mm^2$ and about 1mm, respectively. According to the test results, the effect of a laser peening for improving the surface residual stress was not big enough to induce a high compressive stress on the SUS 304 surface. This is thought to be attributed to the small radius of the laser beam used in this study, even though its energy density is big enough. From this study, it can be concluded that to induce a recognizably high compressive stress on a metal surface, the energy density as well as the size (diameter) of the laser beam should be large enough to generate surface plasma with a high energy to have a big impact to a metal surface.

  • PDF

The Characteristics of Focused Ion Beam Utilized Silicon Mold Fabrication on the Micro/Nano Scale (집속이온빔을 이용한 마이크로/나노스케일에서의 실리콘 금형 가공 특성)

  • Kim, Heung-Bae;Noh, Sang-Lai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.966-974
    • /
    • 2011
  • The use of ion beams in the micro/nano scale is greatly increased by technology development. Especially, focused ion beams (FIBs) have a great potential to fabricate the device in sub micro scale. Nevertheless, FIB has several limitations, surface swelling in low ion dose regime, precipitation of incident ions, and the redeposition effect due to the sputtered atoms. In this research, we demonstrate a way which can be used to fabricate mold structures on a silicon substrate using FIBs. For the purpose of the demonstration, two essential subjects are necessary. One is that focused ion beam diameter as well as shape has to be measured and verified. The other one is that the accurate rotational symmetric model of ion-solid interaction has to be mathematically developed. We apply those two, measured beam diameter and mathematical model, to fabricate optical lenses mold on silicon. The characteristics of silicon mold fabrication will be discussed as well as simulation results.

Study on the Design of a High Condensing LED Searchlight

  • Kim, Tae-Seong;Kim, Jin-Wook;Kim, Sun-Jae;Kil, Gyung-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.201-205
    • /
    • 2015
  • This paper dealt with the condensing technology of an LED light source that uses a parabolic reflector to replace a searchlight equipped with a xenon lamp. A ray-tracing simulation was conducted to analyze the influence of the diameter of the reflector and the size of the light source on light condensing. The combination of a parabolic reflector with a diameter of 620 mm and a focal distance of 220 mm, and a 9 mm multi-chip package (MCP) with a luminous flux of 7,000 lm showed the narrowest beam angle. The luminous intensity at the center was measured at 7.7×106 cd. The distance between the light source and the point where the illuminance was 1 lx was calculated to be 2.8 km. The power consumption of the system was 95 W, which is only 9.5% of that of the 1 kW xenon searchlight, and the beam angle was 1.03°. In a site experiment, it was confirmed that the light ray reflected from the LED searchlight proceeds forward without any diffusion because of the narrow beam angle.

Injection Molding Experiments for Small Diameter Column (미소 원주의 사출 성형 실험)

  • 제태진;이응숙;김재구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.85-88
    • /
    • 1995
  • Recently, the micro mold maching techining technology is developed by means of the mechanical and high energy beam process. It is possible to make the micro structure mold with high aspect ratio by the LIGA technology. This mode is used for mass production of plastic parts by the micro injection molding method. In this study, we intend to research on the basic technology of micro injection molding. As the result, we developed the injection molding technology for small column plastic parts which diameter is 500 .mu. m and 200 .mu. m respectively with wbout aspect ratio 20.

  • PDF