• Title/Summary/Keyword: Beam Stiffener

Search Result 95, Processing Time 0.02 seconds

Optimum arrangement of stiffener on the buckling behaviour of stiffened composite panels with reinforced elliptical cutouts subjected to non-uniform edge load

  • Kalgutkar, Akshay Prakash;Banerjee, Sauvik;Rajanna, T.
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.427-446
    • /
    • 2022
  • Cutouts in the beams or plates are often unavoidable due to inspection, maintenance, ventilation, structural aesthetics purpose, and sometimes to lighten the structures. Therefore, there will be a substantial reduction in the strength of the structure due to the introduction of the cutouts. However, these cutouts can be reinforced with the different patterns of ribs (stiffener) to enhance the strength of the structure. The present study highlights the influence of the elliptical cutout reinforced with a different pattern of ribs on the stability performance of such stiffened composite panels subjected to non-uniform edge loads by employing the Finite element (FE) technique. In the present formulation, a 9-noded heterosis element is used to model the skin, and a 3-noded isoparametric beam element is used to simulate the rib that is attached around a cutout in different patterns. The displacement compatibility condition is employed between the plate and stiffener, and arbitrary orientations are taken care by introducing respective transformation matrices. The effect of shear deformation and rotary inertia are incorporated in the formulation. A new mesh configuration is developed to house the attached ribs around an elliptical cutout with different patterns. Initially, a study is performed on the panels with different stiffener schemes for various ply orientations and for different stiffener depth to width ratios (ds/bs) to determine an optimal stiffener configuration. Further, various parametric studies are conducted on an obtained optimal stiffened panel to understand the effect of cutout size, cutout orientation, panel aspect ratio, and boundary conditions. Finally, from the analysis, it can be observed that the arrangement of the stiffener attached to a panel has a major impact on the buckling capacity of the stiffened panel. The stiffener's depth to width ratio also significantly influences the buckling characteristic.

Experimental study of rigid beam-to-box column connections with types of internal/external stiffeners

  • Rezaifar, Omid;Nazari, Mohammad;Gholhaki, Majid
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.535-544
    • /
    • 2017
  • Box sections are symmetrical sections and they have high moment of inertia in both directions, therefore they are good members in tall building structures. For the rigid connection in structures with box column continuity plates are used on level of beam flanges in column. Assembly of the continuity plates is a difficult and unreliable work due to lack of weld or high welding and cutting in the fourth side of column in panel zone, so the use of experimental stiffeners have been considered by researchers. This paper presented an experimental investigation on connection in box columns. The proposed connection has been investigated in four cases which contain connection without internal and external stiffeners(C-0-00), connection with continuity plates(C-I-CP), connection with external vase shape stiffener (C-E-VP) and connection with surrounding plates(C-E-SP). The results show that the connections with vase plates and surrounding plates can respectively increase the ultimate strength of the connection up to 366% and 518% than the connection without stiffeners, in case connection with the continuity plates this parameter increases about 39%. In addition, the proposed C-E-VP and C-E-SP connection provide a rigid and safe connection to acquire rigidity of 95% and 98% respectively. But C-I-CP connection is classified as semi-rigid connections.

Behavior of Concrete-Filled Tube Column to H-Beam Connections with External Stiffeners and Reinforcing Bar (외부스티프너와 철근으로 보강한 CFT 기둥-H형강 보 접합부의 거동)

  • Kang, Chang-Hoon;Shin, Kyung-Jae;Oh, Young-Suk;Moon, Tae-Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.55-63
    • /
    • 2000
  • This paper is a study on the behavior of Concrete-Filled Square Tubular(CFST) column to H-beam connections reinforced with external stiffeners and reinforcing bar. The cyclic loading tests of 5 test specimens were carried out. The main Parameters are as follows; 1)the length of the stiffener: 200mm, 250mm, 2)the diameter of reinforcing bar: HD16, 19. The results of the researches demonstrate that the increase of the stiffener length was more effective than the increase of the area of reinforcing bar in the point of both strength and stiffness. By reinforcing external stiffeners, stable hysteretic behavior was shown and plastic hinge was formed on the beam flange. Cold-formed tube sections should be used carefully to avoid the welding fracture at the round corners of section, and the proposed welding methods are suitable for this connections.

  • PDF

Structural Dynamics Modification Using Position of Beam Stiffener on Plate (평판에서 빔 보강재의 결합 위치를 이용한 구조물 변경법)

  • Jung, Eui-Il;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.599-604
    • /
    • 2002
  • Substructures position is considered as design parameter to obtain optimal structural changes to raise its dynamic characteristics. In conventional SDM (structural dynamics modification) method, the layout of modifying substructures position is first fixed and at that condition the structural optimization is performed by using the substructures size and/or material property as design parameters. But in this paper as a design variable substructures global translational and rotational position is treated. For effective structural modification the eigenvalue sensitivity with respect to that design parameter is derived based on measured frequency response function. The optimal structural modification is calculated by combining eigenvalue sensitivities and eigenvalue reanalysis technique iteratively. Numerical examples are presented to the case of beam stiffener optimization to raise the natural frequency of plate.

  • PDF

Nonlinear bending analysis of laminated composite stiffened plates

  • Patel, Shuvendu N.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.867-890
    • /
    • 2014
  • This paper deals with the geometric nonlinear bending analysis of laminated composite stiffened plates subjected to uniform transverse loading. The eight-noded degenerated shell element and three-noded degenerated curved beam element with five degrees of freedom per node are adopted in the present analysis to model the plate and stiffeners respectively. The Green-Lagrange strain displacement relationship is adopted and the total Lagrangian approach is taken in the formulation. The convergence study of the present formulation is carried out first and the results are compared with the results published in the literature. The stiffener element is reformulated taking the torsional rigidity in an efficient manner. The effects of lamination angle, depth of stiffener and number of layers, on the bending response of the composite stiffened plates are considered and the results are discussed.

Vibration Analysis of Stiffened Opening Thick Plate (유공 보강 후판의 진동해석)

  • 이효진;김일중;오숙경;정진택;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.794-798
    • /
    • 2004
  • This paper is analysis of stiffened opening thick plate on foundation. This paper has the object of investigating natural frequencies of opening thick plates on Pasternak foundation by means of finite element method and providing Kinematic design data for mat of building structures. In this paper, vibration analysis of rectangular opening thick plate is done by use of Serendipity finite element with 8 nodes by considering shearing strain of plate. And vibration analysis of stiffener is done by used of Timoshenko beam-column element wit 3 nodes. It is shown that natural frequencies depend on not only Winkler foundation parameter but also shear foundation parameter, opening position, opening size, stiffener size.

  • PDF

Seismic Retrofit Design of RHS Column-to-H Beam Connections (RHS 기둥-H형강보 접합부의 내진보강 설계)

  • Kim, Young Ju;Oh, Sang Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.529-537
    • /
    • 2008
  • The objective of this paper is to propose retrofit design methods of theRHS column-to-H beam connections with floor slabs. Referring to previous studies on the retrofitting of moment connections, it is clear that connections retrofitted with a stiffened RBS (SR) or a lengthened horizontal stiffener (LH) has an effect on decreasing the stress/strain concentration. A new design procedure using these two retrofitting methods was thus presented. In addition, this paper addressed various design or detailing options and recommended a procedure for designing the improved retrofitting method of steel moment connections. Finally, a pilot test was conducted to verify the design procedure.

Stiffened Effect of Knee Brace of Cross-Beam in Steel Box-girder Bridges (강박스거더교 가로보 니브레이스(Knee Brace)의 보강효과)

  • Gil, Heung Bae;Jang, Gab Chul;Kang, Sang Gyu;Lee, Il Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.227-234
    • /
    • 2009
  • Recently, a knee brace is usually installed in connection between cross-beam and main-girder of steel box-girder bridges. The knee brace is installed as a structural stiffener and mainly aims to relieve stress at joints and to prevent main-girder from lateral deformation. However, research on the knee brace is insufficient to obviously evaluate the necessity. The stiffened effect of knee brace is determined by using finite element analyses. Stress distribution, stress level of members and deflection of the cross-beam are evaluated by parametric FE analysis for the installation of knee brace and the depth ratio of cross-beam/steel box girder. It is seen from comparison of numerical analysis results that the knee brace installed in cross-beam of steel boxgirders bridges is not efficient as a structural stiffener with respect to stress relief and stiffened effect.

Tensile Behavior of Concrete-Filled Square Steel Tubular Column-Beam Flange Connections with Stiffeners (강관 보강형 충전 각형강관 기둥-보 플랜지 접합부의 인장거동에 관한 실험적 연구)

  • Yoo, Yeong Chan;Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The purpose of this study is to examine the utility of concretefilled steel tubular column to H-beam connections with tubular stiffener. As a preliminary step. a tensile experiment was undertaken to scrutinize characteristics of the structural behavior that take place between beam flanges and column with tubular stiffener. A total of 4 types of experimental settings were developed as tabular stiffeners are made up 9, 18, and 27 mm of thickness and 50 and 80 mm of height respetively Along with the overall load subsequently the degree of displacement and strain were recorded. Based on the yield line theory results of this of this study were evaluated and further critically reviewed the applicability of the strength formula. This study found that collapse mechanism was emerged on the beam flange as reinforcing tabular stiffeners Complementary studies of this sort, including numerical analyses should be undertaken in order to develope specific design critera.

  • PDF

Seismic Behavior of H shaped Beam to Square Column Connection with Outer Diaphragm Using Field Welding (외측 다이아프램을 사용한 현장 용접형 각형강관기둥-H형강보 접합부의 이력거동)

  • Seo, Seong Yeon;Jung, Jin Ahn;Choi, Sung Mo;Kim, Sung Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.459-467
    • /
    • 2005
  • This study focuses on the development of a new method of H-shaped beam-to-square column connection with an outer diaphragm and a field welding. The specific type of beam-to-column connection with an external stiffener, using field welding, is proposed. The structural behavior of this connection was examined experimentally. Two loading type tests were conducted under the experimental parameters given as details. First described was the symmetrical loading test, which supported both ends or a beam simply and applied a load from the column to the pend (What does this mean?) to investigate a fundamental characteristic of this connection. Further described was the anti-symmetrical loading test, which carried out simple support of the column'stop end and the column base, and applied a load from both ends of a beam to investigate the structural performance of this connection. From the results, it is clear that the external- stiffener-type connection proposed in this paper is the reliable connection method.