• Title/Summary/Keyword: Beam Radiation

Search Result 1,764, Processing Time 0.029 seconds

Novalis Shaped Beam Radiation Treatment for Craniopharyngiomas

  • Yee, Gi-Taek;Han, Seong-Rok;Yoon, Sang-Won;Choi, Chan-Young;Lee, Dong-Joon;Whang, Choong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.4
    • /
    • pp.245-248
    • /
    • 2006
  • Objective : To evaluate the effectiveness of Novalis shaped beam radiation treatment as an adjuvant treatment in patients with craniopharyngiomas. Methods : We reviewed 8 patients with craniopharyngiomas who had recurring tumors during follow-up or had residual lesions after primary surgery. Three of 8 patients were found to have recurrence after gross total excision of the tumor and 5 patents had residual lesions after subtotal resection. All patients were treated with fractionated stereotactic radiation treatment[FSRT] using Novalis system. The mean age of patients was 28 years [range $16{\sim}52$]. The median irradiation dose per fraction was 17Gy [range $1.7{\sim}2.0$]. The median fraction number was 23 [range $15{\sim}25$], and the median total dose was 39.1 Gy [range $25.5{\sim}42.5$]. Follow-up included MR imaging, and ophthalmologic and endocrine examinations. Results : The median follow-up period was 23 months [range $12{\sim}43$]. The local tumor control rate was 87.5%. One patient had a recurring tumor, in which cystic change developed 2 months after FSRT. Four patients showed a decrease in size of their tumor, while 3 patients remained stable. Seven out of 8 patients had hormonal dysfunction that remained unchanged after initial surgery. No further progression of visual impairment was observed. Conclusion : FSRT using Novais system is effective and safe for the treatment of recurring or residual craniopharyngiomas without toxicity like optic neuropathy.

Sensitivity Variations with pre-irradiation dose to P-type Semi conductor for radiation dosimetry

  • 최태진;김옥배
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.49-57
    • /
    • 1995
  • The semiconductor detector has a high sensitive to radiation and a small volume. It has been frequently used in high energy photon and electron beamdosimetry. However, Semiconductor detector are subject to radiation damage in high energy radiation beam which reduces the sensitivity and creat a large discrepancy. In this experiments, P-type semiconductor was irradiated to 18 MeV electron beam with pre-irradiation for reducing the sensitivity for high reproducibility and investigated the dose characteristics against the dose rate variations. The sensitivity per unit dose in small dose rate showed a 35% large different to a large dose rate with pre-irradiation dose for 0.5 KGy and 20% for 3 KGyin this study. The silicon detector has showed a large dependency of beam direction with 13% discrepancy and a linear sensitive as increased temperature.

  • PDF

Dose Computational Time Reduction For Monte Carlo Treatment Planning

  • Park, Chang-Hyun;Park, Dahl;Park, Dong-Hyun;Park, Sung-Yong;Shin, Kyung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.116-118
    • /
    • 2002
  • It has been noted that Monte Carlo simulations are the most accurate method to calculate dose distributions in any material and geometry. Monte Carlo transport algorithms determine the absorbed dose by following the path of representative particles as they travel through the medium. Accurate Monte Carlo dose calculations rely on detailed modeling of the radiation source. We modeled the effects of beam modifiers such as collimators, blocks, wedges, etc. of our accelerator, Varian Clinac 600C/D to ensure accurate representation of the radiation source using the EGSnrc based BEAM code. These were used in the EGSnrc based DOSXYZ code for the simulation of particles transport through a voxel based Cartesian coordinate system. Because Monte Carlo methods use particle-by-particle methods to simulate a radiation transport, more particle histories yield the better representation of the actual dose. But the prohibitively long time required to get high resolution and accuracy calculations has prevented the use of Monte Carlo methods in the actual clinical spots. Our ultimate aim is to develop a Monte Carlo dose calculation system designed specifically for radiation therapy planning, which is distinguished from current dose calculation methods. The purpose of this study in the present phase was to get dose calculation results corresponding to measurements within practical time limit. We used parallel processing and some variance reduction techniques, therefore reduced the computational time, preserving a good agreement between calculations of depth dose distributions and measurements within 5% deviations.

  • PDF

Imaging Plate Technique for the Electron Diffraction Study of a Radiation-sensitive Material under Electron Beam (전자 빔 조사 민감 물질의 전자회절분석을 위한 Imaging Plate 기술)

  • Kim, Young-Min;Kim, Yang-Soo;Kim, Jin-Gyu;Lee, Jeong-Yong;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.185-193
    • /
    • 2008
  • An experimental comparison of the detection properties between imaging plate and film for recording the electron diffraction pattern was carried out on a radiation-sensitive material, an aluminum trihydroxide(gibbsite, ${\gamma}-Al(OH)_3$), through the electron beam irradiation. Because the imaging plate has a wide dynamic range sufficient for recording extremely low- and high-electron intensities, the range of spatial frequency for the diffraction pattern acquired by the imaging plate was extended to two times larger than the range by the film, especially at a low electron dose condition(${\leq}0.1\;e^-/{\mu}m^2$). It is also demonstrated that the imaging plate showed better resolving power for discriminating fine intensity levels even in saturated transmitted beam. Hence, in the respect of investigating the structures of radiation-sensitive materials and cryo-biological specimens, our experimental demonstrations suggest that the imaging plate technique may be a good choice for those studies, which have to use an extremely low electron intensity for recording.

The ionization chamber response function from the measured and the corrected by Monte Carlo simulation. (측정된 원통형 전리함 반응함수의 몬테카를로 시뮬레이션 보정)

  • 이병용;김미화;조병철;나상균;김종훈;최은경;장혜숙
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.9-17
    • /
    • 1996
  • The response function of ionization chambers are measured in the narrow radiation field Nominal photon energies are 4MV, 6MV and 15MV. the Radii of the chambers are 0.5cm~3.05cm and the field size is 0.2$\times$20$\textrm{cm}^2$. The measurements are taken in the water phantom at 10cm depth. The beam kernel (radiation distribution profile) for narrow radiation field in the phantom are obtained from Monte Carlo simulation (EGS4, Electron Gamma Shower 4). The beam kernel components in the measured chamber response function are deconvolved in order to get the ideal chamber response function of the $\delta$-shaped function radiation field. The chamber response functions have energy dependent tendency before deconvolution, while they show energy invariant properties, after the components of beam kernels are removed by deconvolution method.

  • PDF

Development of Monitor Chamber Prototype and Basic Performance Testing (모니터 전리함 시작품 개발과 기초 성능 평가)

  • Lee, Mujin;Lim, Heuijin;Lee, Manwoo;Yi, Jungyu;Rhee, Dong Joo;Kang, Sang Koo;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The monitor chamber is a real time dosimetry device for the measurement and the control of radiation beam intensity of the linac system. The monitor chamber prototype was developed for monitoring and controlling radiation beam from the linac based radiation generator. The thin flexible printed circuit boards were used for electrodes of the two independent plane-parallel ionization chambers to minimize the attenuation of radiation beam. The dosimetric characteristics, saturation and linearity of the measured charge, were experimentally evaluated with the Co-60 gamma rays. The performance of the developed monitor chamber prototype was in an acceptable range and this study shows the possibility of the further development of the chamber with additional functions.

Demonstration of the Effectiveness of Monte Carlo-Based Data Sets with the Simplified Approach for Shielding Design of a Laboratory with the Therapeutic Level Proton Beam

  • Lai, Bo-Lun;Chang, Szu-Li;Sheu, Rong-Jiun
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Background: There are several proton therapy facilities in operation or planned in Taiwan, and these facilities are anticipated to not only treat cancer but also provide beam services to the industry or academia. The simplified approach based on the Monte Carlo-based data sets (source terms and attenuation lengths) with the point-source line-of-sight approximation is friendly in the design stage of the proton therapy facilities because it is intuitive and easy to use. The purpose of this study is to expand the Monte Carlo-based data sets to allow the simplified approach to cover the application of proton beams more widely. Materials and Methods: In this work, the MCNP6 Monte Carlo code was used in three simulations to achieve the purpose, including the neutron yield calculation, Monte Carlo-based data sets generation, and dose assessment in simple cases to demonstrate the effectiveness of the generated data sets. Results and Discussion: The consistent comparison of the simplified approach and Monte Carlo simulation results show the effectiveness and advantage of applying the data set to a quick shielding design and conservative dose assessment for proton therapy facilities. Conclusion: This study has expanded the existing Monte Carlo-based data set to allow the simplified approach method to be used for dose assessment or shielding design for beam services in proton therapy facilities. It should be noted that the default model of the MCNP6 is no longer the Bertini model but the CEM (cascade-exciton model), therefore, the results of the simplified approach will be more conservative when it was used to do the double confirmation of the final shielding design.

Optimization for Electro Deposition Process of PC/ABS Resin Surface Treatment (수지의 하전 입자빔 전처리 공정의 최적화)

  • Park, Young Sik;Shim, Ha-Mong;Na, Myung Hwan;Song, Ho-Chun;Yoon, Sanghoo;Jang, Keun Sam
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.543-552
    • /
    • 2014
  • High bandwidth RF such as Bluetooth, GPRS, EDGE, 3GSM, HSDPA is papular in the mobile phone market. A non-conducting metal coating process requires an e-beam deposition of metal, two steps of UV hard coating primer and top coating; however, it is inefficient. We navigate to the electron beam irradiation conditions(resin surface treatment conditions) in the PC/ABS resin injection process. By analyzing the experimental results, we find the optimum development conditions for the electro deposition pre-treatment process and mass production lines using the plasma generated electron beam source.