Imaging Plate Technique for the Electron Diffraction Study of a Radiation-sensitive Material under Electron Beam

전자 빔 조사 민감 물질의 전자회절분석을 위한 Imaging Plate 기술

  • Published : 2008.09.30

Abstract

An experimental comparison of the detection properties between imaging plate and film for recording the electron diffraction pattern was carried out on a radiation-sensitive material, an aluminum trihydroxide(gibbsite, ${\gamma}-Al(OH)_3$), through the electron beam irradiation. Because the imaging plate has a wide dynamic range sufficient for recording extremely low- and high-electron intensities, the range of spatial frequency for the diffraction pattern acquired by the imaging plate was extended to two times larger than the range by the film, especially at a low electron dose condition(${\leq}0.1\;e^-/{\mu}m^2$). It is also demonstrated that the imaging plate showed better resolving power for discriminating fine intensity levels even in saturated transmitted beam. Hence, in the respect of investigating the structures of radiation-sensitive materials and cryo-biological specimens, our experimental demonstrations suggest that the imaging plate technique may be a good choice for those studies, which have to use an extremely low electron intensity for recording.

전자 빔 조사 민감 물질인 gibbsite(${\gamma}-Al(OH)_3$)의 전자 빔 조사 상전이 연구에서 전자회절 자료의 기록에 대한 imaging plate와 필름의 기록 특성을 실험적으로 비교하였다. Imaging plate는 극단적으로 낮은 전자 강도와 높은 전자 강도를 동시 기록하기에 충분한 선형 dynamic range를 갖기 때문에, 매우 낮은 전자 조사 조건(${\leq}0.1\;e^-/{\mu}m^2$)에서 전자 회절 자료를 기록할 때 필름에 비해 회절 자료의 spatial frequency 범위가 두 배 이상 확장되었다. 심지어 이미 기록 포화된 투과 빔 주위의 신호 정보 레벨을 세분화하는 데에도 훨씬 우수한 분해 성능을 나타내었다. 따라서 본 연구 결과는 imaging plate가 극단적으로 낮은 전자 강도 기록이 필요한 전자 빔 조사 민감 물질이나 cryo-biological 시편들의 구조 연구 관점에서 가장 적절한 기록 매체임을 나타낸다.

Keywords

References

  1. Amemiya Y, Miyahara J: Imaging plate illuminates many fields. Nature 336 : 89, 1988 https://doi.org/10.1038/336089a0
  2. Arami H, Mazloumi M, Khalifehzadeh R, Sadrnezhaad SK: Electron beam-induced "Nanocalcination" of boehmite nanostrips to mesoporous $\alpha$-alumina phase. J Am Ceram Soc 90 : 3311-3313, 2007 https://doi.org/10.1111/j.1551-2916.2007.01866.x
  3. DITABIS AG: DITABIS imaging plate technology for all applications in transmission electron microscopy. http://www.ditabis.de/iptech/iptech.html, 2008
  4. Downing KH, Mooney PE: A charge coupled device camera with electron decelerator for intermediate voltage electron microscopy. Rev Sci Instrum 79 : 043702, 2008
  5. Echlin P: Low-temperature microscopy and analysis. Plenum press, New York, 1992
  6. Egerton RF, Malac PLM: Radiation damage in the TEM and SEM. Micron 35 : 399-409, 2004 https://doi.org/10.1016/j.micron.2004.02.003
  7. Ishizuka K: Analysis of electron image detection efficiency of slow scan CCD camera. Ultramicroscopy 52 : 7-20, 1993 https://doi.org/10.1016/0304-3991(93)90018-S
  8. Isoda S, Saitoh K, Moriquchi S, Kobayashi T: Utility test of imaging plate as a high-resolution image-recording material for radiation-sensitive specimens. Ultramicroscopy 35 : 329-338, 1991 https://doi.org/10.1016/0304-3991(91)90085-K
  9. Isoda S, Saitoh K, Ogawa T, Moriguchi S, Kobayashi T: A comparative study of the modulation transfer function of an imaging plate. Ultramicroscopy 41 : 99-104, 1992 https://doi.org/10.1016/0304-3991(92)90099-6
  10. Kim YM, Jeung JM, Lee S, Kim YJ: TEM specimen preparation method of gibbsite powder for quantitative structure analysis. Korean J Electron Microsc 32 : 311-317, 2002
  11. Kim YM, Kim YJ: Accurate interpretation of electron diffraction data acquired by imaging plates. Korean J Electron Microsc 33(3) : 195-204, 2003
  12. Kim YM, Lee JY, Moonen D, Jang KI, Kim YJ: Quantitative evaluations of a high-voltage multiscan CCD camera. J Electron Microsc 56(6) : 217-224, 2007 https://doi.org/10.1093/jmicro/dfm029
  13. Kim YM, Lee S, Kim YS, Oh SH, Kim YJ, Lee JY: Electron-beaminduced transition aluminas from aluminum trihydroxide. Scripta Mater 59 : 1022-1025, 2008 https://doi.org/10.1016/j.scriptamat.2008.07.011
  14. Kogure T: Dehydration sequence of gibbsite by electron-beam irradiation in a TEM. J Am Ceram Soc 82 : 716-720, 1999 https://doi.org/10.1111/j.1151-2916.1999.tb01822.x
  15. Laine RM, Marchal JC, Sun HP, Pan XQ: $Nano-\alpha-Al_{2}O_{3}$ by liquidfeed flame spray pyrolysis. Nature Mater 5 : 710-712, 2006 https://doi.org/10.1038/nmat1711
  16. Mori N, Oikawa T: The imaging plate and its application. Advances in Imaging and Electron Physic 99 : 241-288, 1998
  17. Mori N, Oikawa T, Harada Y, Miyahara J: Development of the imaging plate for the transmission electron microscope and its characteristics. J Electron Microsc 39 : 433-436, 1990
  18. Mori N, Oikawa T, Katoh T, Miyahara J, Harada Y: Application of the "maging plate"to TEM image recording. Ultramicroscopy 25 : 195-202, 1988 https://doi.org/10.1016/0304-3991(88)90014-9
  19. Oikawa T, Shindo D, Hiraga K: Fading characteristic of imaging plate for a transmission electron microscope. J Electron Microsc 43 : 402-405, 1994
  20. Saalfeld H, Wedde M: Refinement of the crystal structure of gibbsite, $Al(OH)_{3}$. Z Kristall 139 : S129-135, 1974 https://doi.org/10.1524/zkri.1974.139.1-2.129
  21. Shibahara H, Numaguchi K, Kawasaki M, Takizawa H: Quantification of oxygen vacancies in perovskite using a 300 kV HREM with an imaging plate. J Electron Microsc 44(4) : 174, 1995
  22. Shindo D: Quantitative transmission electron microscopy with imaging plate. High Temp Mater proc 17(1-2) : 87-95, 1998
  23. Shindo D, Hiraga K, Iijima S, Kudoh J, Nemoto Y, Oikawa T: High-resolution electron microscopy of short-range ordered structure of $Ga_{0.5}In_{0.5}P$. J Electron Microsc 42(4) : 227-230, 1993
  24. Shindo D, Hiraga K, Oikawa T, Mori N: Quantification of electron diffraction with imaging plate. J Electron Microsc 39(6) : 449-453, 1990
  25. Shindo D, Hiraga K, Oku T, Oikawa T: Quantification in high-resolution electron microscopy with the imaging plate. Ultramicroscopy 39(1/4) : 50-57, 1991 https://doi.org/10.1016/0304-3991(91)90181-5
  26. Shindo D, Oku T, Kudoh J, Oikawa T: Quantitative high-resolution electron microscopy of a high-$T_{c}$ superconductor $Tl_{2}Ba_{2}Cu_{1}Oy$ with the imaging plate. Ultramicroscopy 54 : 221-228, 1994 https://doi.org/10.1016/0304-3991(94)90121-X
  27. Taniyama A, Shindo D, Oikawa T: Sensitivity and fading characteristics of the 25 $\mu$m pixel size imaging plate for transmission electron microscopes. J Electron Microsc 45 : 232-235, 1996 https://doi.org/10.1093/oxfordjournals.jmicro.a023437
  28. Taniyama A, Shindo D, Oikawa T: Detective quantum efficiency of the 25 $\mu$m pixel size imaging plate for transmission electron microscopes. J Electron Microsc 46(4) : 303-310, 1997 https://doi.org/10.1093/oxfordjournals.jmicro.a023523
  29. Tsung L, Mollon B, Pan M, Jia Y, Mooney P, Mao C: Development of TV-rate CCD cameras for in-situ electron microscopy. Microsc Today 16 : 16-19, 2008
  30. Wang YG, Bronsveld PM, DeHosson JTM: Ordering of octahedral vacancies in transition aluminas. J Am Ceram Soc 81 : 1655-1660, 1998 https://doi.org/10.1111/j.1151-2916.1998.tb02527.x
  31. Wefers K, Misra C: Oxides and hydroxides of aluminum. Alcoa Technical Paper No. 19. (Revised), Alcoa Laboratories, 1987
  32. Zuo JM, McCartney MR, Spence JCH: Performance of imaging plates for electron recording. Ultramicroscopy 66 : 35-47, 1996 https://doi.org/10.1016/S0304-3991(96)00076-9
  33. Zuo ZM: Electron detection characteristics of slow-scan CCD camera. Ultramicroscopy 66 : 21-33, 1996 https://doi.org/10.1016/S0304-3991(96)00075-7