• Title/Summary/Keyword: Beam Factor

Search Result 1,017, Processing Time 0.031 seconds

The Effects on Dose Distribution Characteristics by Changing Beam Tuning Parameters of Digital Linear Accelerator in Medicine (의료용 디지털 선형가속기의 빔조정 인자변화가 선량분포특성에 미치는 영향)

  • 박현주;이동훈;이동한;권수일;류성렬;지영훈
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 1999
  • INJ-I, INJ-E, PFN, BMI, and PRF were selected among the various factors which constitute a digital linear accelerator to find effects on the dose distribution by changing current and voltage within the permitted scale which Mevatron automatically maintained. We measured the absorbed dose using an ion chamber, analyzed the waveform of beam output using an oscilloscope, and measured symmetry and flatness using a dosimetry system. An RFA plus (Scanditronix, Sweden) device was used as a dosimetry system. Then an 0.6cc ion chamber (PR06C, USA), an electrometer (Capintec192, USA), and an oscilloscope (Tektronix, USA) were employed to measure the changes on the dose distribution characteristics by changing the beam-tuning parameters. When the currents and the voltages of INJ-I, INJ-E, PFN, BMI, and PRF were modified, we were able to see the notable change on the dose rate by examining the change of the output pulse using the oscilloscope and by measuring them using the ion chamber. However, the results of energy and flatness graph from RF A plus were almost identical. The factors had fine differences: INJ-I, INJ-E, PFN, BMI, and PRF had 0.01∼0.02% differences in D10/D20, 0.1∼0.2 % differences in symmetry, and 0.1∼0.4% differences in flatness. Since Mevatron controlled itself automatically to keep the reference value of the factor, it was not able to see large differences in the dose distribution. There were fine differences on the dose rate distribution when the voltage and the currents of the digitized factors were modified Nonetheless, a basic operational management information was achieved.

  • PDF

Air Temperature Modification of an Urban Neighborhood Park in Summer - Hyowon Park, Suwon-si, Gyeonggi-do- (여름철 도시근린공원의 기온저감 효과 - 경기도 수원시 효원공원 -)

  • Park, Sookuk;Jo, Sangman;Hyun, Cheolji;Kong, Hak-Yang;Kim, Seunghyun;Shin, Youngkyu
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1057-1072
    • /
    • 2017
  • In order to investigate the effect of air temperature reduction on an urban neighborhood park, air temperature data from five inside locations (forest, pine tree, lawn, brick and pergola) depending on surface types and three outside locations (Suwon, Maetan and Kwonsun) depending on urban forms were collected during the summer 2016 and compared. The forest location had the lowest mean air temperature amongst all locations sampled, though the mean difference between this and the other four locations in the park was relatively small ($0.2-0.5^{\circ}C$). In the daytime, the greatest mean difference between the forest location and the two locations exposed to direct beam solar radiation (brick and lawn) was $0.5-0.8^{\circ}C$ (Max. $1.6-2.1^{\circ}C$). In the nighttime, the mean difference between the forest location and the other four locations in the park was small, though differences between the forest location and locations with grass cover (pine tree and lawn) reached a maximum of $0.9-1.7^{\circ}C$. Comparing air temperature between sunny and shaded locations, the shaded locations showed a maximum of $1.5^{\circ}C$ lower temperature in the daytime and $0.7^{\circ}C$ higher in the nighttime. Comparing the air temperature of the forest location with those of the residential (Kwonsun) and apartment (Maetan) locations, the mean air temperature difference was $0.8-1.0^{\circ}C$, higher than those measured between the forest location and the other park locations. The temperatures measured in the forest location were mean $0.9-1.3^{\circ}C$ (Max. $2.0-3.9^{\circ}C$) lower in the daytime than for the residential and apartment locations and mean $0.4-1.0^{\circ}C$ (Max. $1.3-3.1^{\circ}C$) lower in the nighttime. During the hottest period of each month, the difference was greater than the mean monthly differences, with temperatures in the residential and apartment locations mean $1.0-1.6^{\circ}C$ higher than those measured in the forest location. The effect of air temperature reduction on sampling locations within the park and a relatively high thermal environment on the urban sampling locations was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with a high sky view factor and surface types with high evapotranspiration potential (e.g. grass) showed the maximum air temperature reduction. In the urban areas outside the park, the low-rise building area, with a high sky view factor, showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, while in the nighttime the area with high-rise buildings, and hence a low sky view factor, showed high air temperature due to the effect of terrestrial (longwave) radiation emitted by surrounding high-rise building surfaces. The effect of air temperature reduction on the park with a high thermal environment in the city was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with high sky view factor and surface types (e.g., grass) with evapotranspiration effect showed maximum air temperature reduction. In the urban areas outside the park, the high sky view factor area (low-rise building area) showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, but in the nighttime the low sky view factor area (high-rise building area) showed high air temperature due to the effect of terrestrial (longwave) radiation emitted surrounding high-rise building surfaces.

Development of a Dose Calibration Program for Various Dosimetry Protocols in High Energy Photon Beams (고 에너지 광자선의 표준측정법에 대한 선량 교정 프로그램 개발)

  • Shin Dong Oh;Park Sung Yong;Ji Young Hoon;Lee Chang Geon;Suh Tae Suk;Kwon Soo IL;Ahn Hee Kyung;Kang Jin Oh;Hong Seong Eon
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.381-390
    • /
    • 2002
  • Purpose : To develop a dose calibration program for the IAEA TRS-277 and AAPM TG-21, based on the air kerma calibration factor (or the cavity-gas calibration factor), as well as for the IAEA TRS-398 and the AAPM TG-51, based on the absorbed dose to water calibration factor, so as to avoid the unwanted error associated with these calculation procedures. Materials and Methods : Currently, the most widely used dosimetry Protocols of high energy photon beams are the air kerma calibration factor based on the IAEA TRS-277 and the AAPM TG-21. However, this has somewhat complex formalism and limitations for the improvement of the accuracy due to uncertainties of the physical quantities. Recently, the IAEA and the AAPM published the absorbed dose to water calibration factor based, on the IAEA TRS-398 and the AAPM TG-51. The formalism and physical parameters were strictly applied to these four dose calibration programs. The tables and graphs of physical data and the information for ion chambers were numericalized for their incorporation into a database. These programs were developed user to be friendly, with the Visual $C^{++}$ language for their ease of use in a Windows environment according to the recommendation of each protocols. Results : The dose calibration programs for the high energy photon beams, developed for the four protocols, allow the input of informations about a dosimetry system, the characteristics of the beam quality, the measurement conditions and dosimetry results, to enable the minimization of any inter-user variations and errors, during the calculation procedure. Also, it was possible to compare the absorbed dose to water data of the four different protocols at a single reference points. Conclusion : Since this program expressed information in numerical and data-based forms for the physical parameter tables, graphs and of the ion chambers, the error associated with the procedures and different user could be solved. It was possible to analyze and compare the major difference for each dosimetry protocol, since the program was designed to be user friendly and to accurately calculate the correction factors and absorbed dose. It is expected that accurate dose calculations in high energy photon beams can be made by the users for selecting and performing the appropriate dosimetry protocol.

Evaluation for Progressive Collapse Resistance of a RC Flat Plate System Using the Static and Dynamic Analysis (정적 및 동적 해석을 통한 철근콘크리트 무량판 구조의 연쇄 붕괴 저항 성능 평가)

  • Lee, Seon-Woong;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.245-252
    • /
    • 2011
  • Currently, the design guidelines for the prevention of progressive collapse are not available in Korea due to the lack of study efforts in progressive collapse resistance evaluation of RC flat plate system. Therefore, in this study, three types of analysis were conducted to evaluate the progressive collapse resistance of a RC flat plate system. A linear static analysis was carried out by comparing the demand-capacity ratio (DCR) differences of the systems using the alternate load path method, which is the guideline of GSA. A dynamic behavior was investigated by checking the vertical deflection after removal of the column using the linear dynamic analysis. Lastly, a maximum load factor was investigated using the nonlinear static analysis. The finite element (FE) analyses were conducted using various parameters to analyze the results obtained using effective beam width (EB) model and plate element FEM (PF) model. This study results showed that the strength contributions of the slab in the EB models are underestimated compared to those obtained from the PF models. Therefore, a detailed FE analysis considering the slab element is required to thoroughly estimate the progressive collapse resisting capacity of flat plate system. The scenario of the corner column (CC) removal is the most dangerous conditions where as the scenario of the inner column (IC) removal is the least dangerous conditions based on the consideration of various parameters. The analysis results will allow more realistic evaluations of progressive collapse resistance of RC flat plate system.

Investigation on backscatter According to Changed in Components of Linear Accelerator Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 선형가속기 구성요소 변화에 따른 후방산란에 관한 연구)

  • Kim, Hwein;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.239-247
    • /
    • 2015
  • It should be accurate dose calculation to increase the efficiency of radiation therapy, and it is priority to figure out the beam characteristics for this purpose. The target and primary collimator in head components of the linear accelerator have the greatest influence on determining the beam characteristics which is caused by backscatter and it is the factor to consider the shielding structures and equipment management. In this study, we made modeling of the linear accelerator through the Geant4 Monte Carlo simulation and investigated backscatter according to the change of the size and shape in head components. For the scattered electrons, it showed the greatest number of distributions inside of the inner radius at primary collimator. But, for the scattered photons which have the high energy, it was mostly located outside of the inner radius at primary collimator. Scattered positrons showed a small occurrence in about 0.03%. According to the change of the inner radius at primary collimator, it was great changes in the inside of inner radius for all three scattered particles. According to the change of the outer radius at primary collimator, it was shown some considerable effects from more than 60 mm outer radius. It was no significant effect according to the change of target thickness. In this study, we found that backscatter should be considered, and figured out that geometric size and shape of the peripheral components are the factors that influences the backscatter effect.

Statistical Characteristics of Atmospheric Conditions related to Radar Beam Propagation using Radiosonde Data in 2005-2006 (2005-2006년 라디오존데 자료를 이용한 레이더 빔전파와 연관된 대기상태의 통계적 특성)

  • Jung, Sung-Hwa;Lee, Gyu-Won
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.584-599
    • /
    • 2010
  • The variation of atmospheric conditions including subrefraction, normal refraction, superrefraction, and ducting is an important factor that affects the quality of radar data by controling the propagation of radar beams. The occurrence frequency of the conditions is statistically analyzed using the atmospheric soundings from seven radiosonde stations in South Korea over two years. The occurrence of superrefraction and ducting at Baengnyeongdo is significantly higher than the others. Osan and Kwangju show significant variation in time. Among the different duct conditions, the surface duct is dominant at most stations except for Gosan. The elevated duct is dominant at Heuksando and Gosan. Duct is more frequent in summer than in winter at all stations. Baengnyeongdo shows the most frequent duct in spring, fall, and winter while Pohang had the highest frequency in summer. Osan and Kwangju show least duct during all seasons. The difference of variation of monthly duct occurrence between 00 UTC and 12 UTC is insignificant at all stations except for Osan and Kwangju. Kwangju, Heuksando and Gosan show relatively low frequency of duct with the monthly maximum barely reaching 60%. The highest number of elevation angles that are affected by duct was four at Osungsan radar (KSN). The maximum elevation angle is around $1.0^{\circ}$ at all stations and Jindo radar (JNI) shows the maximum value of $1.2^{\circ}$.

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

Tension Lap Splice Length in High-Strength Concrete Flexural Members (고강도 콘크리트 휨부재의 인장 겹침이음길이에 관한 연구)

  • Lee, Gi-Yeol;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.753-761
    • /
    • 2009
  • This paper presents the test results of total 24 beam-end specimens to investigate the effect of high-strength concrete and cover thickness on the development resistance capacity in tensile lap splice length regions. Based on bond characteristics that an increase in concrete strength results in higher bond stress and shortening of the transfer length, cracking behavior that thin cover thickness induced a splitting crack easily and brittle crack propagation, current design code that development length provisions as uniform bond stress assumption was investigated apply as it. The results showed that as higher strength concrete was employed, not only development resistance capacity was influenced by cover thickness, but also more sufficient safety factor reserved shorter than the lap splice length provision in current design code. From experimental research results, high-strength concrete development length was not inverse ratio of $\sqrt{f_{ck}}$ but directly inverse of $f_{ck}$, and it is also said that there is a certain limit length of the embedded steel over which the assumption of uniform bond stress distribution is valid specially for high-strength concrete not having a same embed length such as normal-strength concrete in current design criteria hypothesis.

Measurement of the Photon Fluence for the Evaluation of Photon Detection Efficiency of Photon Counting Sensor (광계수형 센서의 포톤계수효율 평가를 위한 포톤플루엔스 측정)

  • Park, Ji-Koon;Heo, Ye-Ji;Kim, Kyo-Tae;Noh, Si-Cheol;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Recently, the various digital X-ray imaging devices using CCD and TFT LCD-based flat panel digital X-ray sensor are being used. In particular, a number of studies on photon counting sensor technique have been reported. In this study, the incident X-rays fluence on the photon counting sensor material was measured to estimate photon detection efficiency which is the quantitative performance evaluation factor of photon counting sensor. The result of measuring the photon fluence by using RQA-M2 Radiation beam quality of IEC 61223-1-2 recommendations, the incident photon fluence could be defined as about $4 photons/(0.01mm)^2{\cdot}{\mu}Gy$ within $10{\mu}m$ pin-hole area, and about $50photons/(0.03mm)^2{\cdot}{\mu}Gy$ within $30{\mu}m$ pin-hole area, and about $698photons/(0.1mm)^2{\cdot}{\mu}Gy$ within $100{\mu}m$ pin-hole area. Consequently, with the previously setup of the incident fluence, the measuring of actual photon counting efficiency by observing the output waveform of the photon counting sensor material was considered possible.

Determination of Quality Factors for Cylindrical Ionization Chambers in kV X-rays: Review of IAEA Dosimetry Protocol and Monte Carlo Calculations and Measurements for N23333 and N30001 Chambers (kV X-선에서 원통형전리함의 선질인자 결정에 관한 연구: IAEA 프로토클 고찰과 N23333, N30001 전리함에 대한 몬테칼로 계산 및 측정)

  • Lee Kang Kyoo;Lim Chunil;Chang Sei Kyung;Moon Sun Rock;Jeong Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.53-61
    • /
    • 2005
  • The quality factors for cylindrical ionization chambers for kV X-rays were determined by Monte Carlo calculation and measurement. In this study, the X-rays of 60-300 kV beam (lSO-4037) installed in KFDA and specified in energy spectra and beam qualities, and the chambers of PTW N23333 and N30001 were investigated. In calculations, the $R_{\mu}\;and\;R_{Q,Q_{0}}$ in IAEA dosimetry protocols were determined from the air kerma and the cavity dose obtained by theoretical and Monte Carlo calculations. It is shown that the N30001 chamber has a flat response of $\pm1.7\%$ in $110\~300kV$ region, while the response range of two chambers were shown to $\pm3\~4\%$ in $80\~250kV$ region. From this work we have discussed dosimetry protocol for the kV X-rays and we have found that the estimation of energy dependency is more important to apply dosimetry protocol for kV X-rays.

  • PDF