• Title/Summary/Keyword: Beam Element

Search Result 2,860, Processing Time 0.029 seconds

Dynamics of an Axially Moving Timoshenko Beam (축 방향으로 이동하는 티모센코보의 동특성 해석)

  • Kim, Joo-Hong;Oh, Hyung-Mi;Lee, U-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1066-1071
    • /
    • 2002
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. The high accuracy of the present spectral element is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, the dispersion relation, and the stability of a moving Timoshenko beam are investigated, analytically and numerically.

  • PDF

Spectral Element Modeling and Dynamic Analysis of an Axially Moving Viscoelastic Beam (이동하는 점탄성 보의 스펙트럴 요소모델링 및 동역학 해석)

  • Oh, Hyung-Mi;Kim, Do-Yeon;Lee, U-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1672-1677
    • /
    • 2003
  • In this paper, the spectral element model is derived for the vibration and stability analyses of an axially moving viscoelastic beam subjected to axial tension. The viscoelastic material is represented by using a one-dimensional constitutive equation of hereditary integral type. The accuracy of the present spectral element model is first verified by comparing the eigenvalues obtained by the present spectral element model-based SEM with those obtained by the exact theory and the conventional FEM. The effects of viscoelasticity on the vibration and stability of an example moving viscoelastic beam are numerically investigated.

  • PDF

Dynamic Characteristics of the Beam Axially Moving Over Multiple Elastic Supports (다수의 탄성지지대 위를 이동하는 보 구조물의 동특성 해석)

  • 김태형;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • This paper investigates the dynamic characteristics of a beam axially moving over multiple elastic supports. The spectral element matrix is derived first for the axially moving beam element and then it is used to formulate the spectral element matrix for the moving beam element with an interim elastic support. The moving speed dependance of the eigenvalues is numerically investigated by varying the applied axial tension and the stiffness of the elastic supports. Numerical results show that the fundamental eigenvalue vanishes first at the critical moving speed to generate the static instability.

The finite element model of pre-twisted Euler beam based on general displacement solution

  • Huang, Ying;Chen, Changhong;Zou, Haoran;Yao, Yao
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.479-486
    • /
    • 2019
  • Based on the displacement general solution of a pre-twisted Euler-Bernoulli beam, the shape function and stiffness matrix are deduced, and a new finite element model is proposed. Comparison analyses are made between the new proposed numerical model based on displacement general solution and the ANSYS solution by Beam188 element based on infinite approach. The results show that developed numerical model is available for the pre-twisted Euler-Bernoulli beam, and that also provide an accuracy finite element model for the numerical analysis. The effects of pre-twisted angle and flexural stiffness ratio on the mechanical property are also investigated.

Equivalent Beam Element for Vibration Analysis of Damped Composite Beam Structure (복합감쇠보의 진동해석을 위한 등가보요소의 개발)

  • Won, Sung-Gyu;Jeong, Weui-Bong;Bae, Soo-Ryong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.844-847
    • /
    • 2006
  • In this paper, the forced vibration of damped composite beam with I-type section was analyzed. The damping material was assumed to have complex Young's modulus. Damped composite beam structure could be modeled using equivalent beam elements with less D.O.F. rather than solid elements. Finite element method for 6 D.O.F. equivalent beam element was formulated and programmed using complex values. The results of frequency responses revealed good agreement with those of NASTRAN in both Euler beam model and Timoshenko beam model.

  • PDF

Aeroelastic Analyses of Aircraft Wing by Using Equivalent Continuum BeamalRod Model (등가연속체 Beam-Rod 모델을 이용한 항공기 날개의 공력탄성 해석)

  • Lee, U-Sik;Lee, Hang
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.615-622
    • /
    • 1995
  • It may be inefficient to conduct the aeroelastic analysis by using full-scale conventional finite-element analyses or experiments, from the initial design phase, for an aircraft wing which can be considered as the discontinuum complex structure with composite laminated skins. In this paper, therefore more efficient aeroelastic analysis has been conducted for a box-beam typed aircraft wing by using the equivalent continuum beam-rod model which is derived from the concept of energy equivalence. Equivalent structural properties of the continuum beam-rod model are obtained from the direct comparison of the finite-element matrices of continuum beam-rod model with those of box-beam typed aircraft wing. Numerical results by the continuum beam-rod model approach are compared with those by the conventional finite-element analysis approach to show that the continuum beam-rod model proposed herein is quite satisfactory as a simplified model of aircraft wing structure for aeroelastic analyses.

Improvement of the Timoshenko beam based finite element model for multi-stepped beam structures (다단 보 구조에서의 티모센코 보요소 모델링 오차 개선에 관한 연구)

  • 이용덕;홍성욱;이종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.788-791
    • /
    • 2002
  • The Timoshenko beam model has been acknowledged as the most accurate model for representing beam structures. However, the Timoshenko beam model may give rise to significant error when it is applied to multi-stepped beam structures. This paper is intended to demonstrate and improve the modeling error of Timoshenko beam theory for multi-stepped team structures. A tentative bending spring is introduced to represent the stiffness change around a step in beams. This paper proposes a finite element modeling method in the light with the bending spring. The proposed method is rigorously compared with commercial finite element codes. The validity of the proposed method is also demonstrated through an experiment..

  • PDF

Geometrically nonlinear analysis of a laminated composite beam

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.27-36
    • /
    • 2018
  • The objective of this work is to analyze geometrically nonlinear static analysis a simply supported laminated composite beam subjected to a non-follower transversal point load at the midpoint of the beam. In the nonlinear model of the laminated beam, total Lagrangian finite element model of is used in conjunction with the Timoshenko beam theory. The considered non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. In the numerical results, the effects of the fiber orientation angles and the stacking sequence of laminates on the nonlinear deflections and stresses of the composite laminated beam are examined and discussed. Convergence study is performed. Also, the difference between the geometrically linear and nonlinear analysis of laminated beam is investigated in detail.

A Study on the Mixed Finite Element Models of Nonlinear Beam Bending Based on the Unconventional Residual Minimizing Method (비전통적 오차 최소화 방식에 기초한 비선형 빔의 휨에 대한 혼합형 유한요소해석 모델 연구)

  • Kim, Woo-Ram;Choi, Youn-Dae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.785-795
    • /
    • 2009
  • In this paper, new type of finite element models for the analysis of nonlinear beam bending are developed by using unconventional residual minimizing method to increase accuracy of finite element solutions and overcome some of computational drawbacks. Developing procedures of the new models are presented along with the comparison of the numerical results of existing beam bending models.

Forced vibration analysis of damped beam structures with composite cross-section using Timoshenko beam element

  • Won, S.G.;Bae, S.H.;Jeong, W.B.;Cho, J.R.;Bae, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.15-30
    • /
    • 2012
  • A damped Timoshenko beam element is introduced for the DOF-efficient forced vibration analysis of beam-like structures coated with viscoelastic damping layers. The rotary inertia as well as the shear deformation is considered, and the damping effect of viscoelastic layers is modeled as an imaginary loss factor in the complex shear modulus. A complex composite cross-section of structures is replaced with a homogeneous one by means of the transformed section approach in order to construct an equivalent single-layer finite element model capable of employing the standard $C^{0}$-continuity basis functions. The numerical reliability and the DOF-efficiency are explored through the comparative numerical experiments.