• Title/Summary/Keyword: Beam Current

Search Result 1,295, Processing Time 0.037 seconds

Micro joining using electron beam welding system (전자빔 용접장치를 이용한 미세접합)

  • Seo Jeong;Lee Je Hun;Kim Jeong O;Gang Hui Sin
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.79-81
    • /
    • 2004
  • In this study EB(Electron Beam) welder was modified to apply Ef welder to micro-joining for soldering and micro-brazing. The power and beam current of EB welder is 6kW, 100mA(60kV) and the minimum current was 1mA. The minimum current of EB welder was modified to decrease the amount of beam current to 0.0lmA and the monitoring system to observe materials was made up. The system is developed including teaching function for generating patterns. The control system and CAD/CAM software for EB direct writing was developed and the deflection beam was controlled without moving workpieces. the possibility of applying EB welder to micro-joining for soldering and brazing was studied through this experiments.

  • PDF

Control and Design of a Arc Power Supply for KSTAR's the Neutral Beam Injection

  • Ryu, Dong-Kyun;Lee, Hee-Jun;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • The neutral beam injection generate ultra-high temperature energy in the tokamak of nuclear fusion. The neutral beam injection make up arc power supply, filament power supply and acceleration & deceleration power supply. The arc power supply has characteristics of low voltage and high current. Arc power supply generate arc through constant output of voltage and current. So this paper proposed suitable buck converter for low voltage and high current. The proposed buck converter used parallel switch because it can be increased capacity and decrease conduction loss. When an arc generated, the neutral beam injection chamber occur high voltage. And it will break output capacitor of buck converter. Therefore the output capacitor was removed in the proposed converter. Thus the proposed converter should be designed for the characteristics of low voltage and high current. Also, the arc power supply should be guaranteed for system stability. The proposed parallel buck converter enables the system stability of the divided low output voltage and high current. The proposed converter with constant output be the most important design of the output inductor. In this paper, designed arc power supply verified operation of system and stability through simulation and prototype. After it is applied to the 288[kW] arc power supply for neutral beam injection.

MEVVA ion Source And Filtered Thin-Film Deposition System

  • Liu, A.D.;Zhang, H.X.;Zhang, T.H.;Zhang, X.Y.;Wu, X.Y.;Zhang, S.J.;Li, Q.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.55-57
    • /
    • 2002
  • Metal-vapor-vacuum-arc ion source is an ideal source for both high current metal ion implanter and high current plasma thin-film deposition systems. It uses the direct evaporation of metal from surface of cathode by vacuum arc to produce a very high flux of ion plasmas. The MEVVA ion source, the high-current metal-ion implanter and high-current magnetic-field-filtered plasma thin-film deposition systems developed in Beijing Normal University are introduced in this paper.

  • PDF

Optimization of Prestressed Concrete Beam Section (프리스트레스트 콘크리트 보 단면의 최적설계)

  • 조선규;최외호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.91-101
    • /
    • 2000
  • As the computer related technology evolves a study for a practical use of real structure as well as its hteory for optimum design has been greatly advanced. But the study on optimum design of pre-stressed concrete beam(PSC-beam) bridge for the construction of national roads and highways in Korea is not sufficient. Since a standard section for the PSC-beam is proposed, it is practically used in designing the PSC-beam. It is noticed that the section using the current standard PSC-beam design to be an over-designed with its surplus safety factor. Therefore, it is necessary to consider economical PSC-beam section which automatically satisfies all requirement of design specifications. Thus, in this study, the optimum design methods of PSC-beam are carried out using the gradient-based search method and global search method. As a result of the optimum design method, it was confirmed that the design of PSC-beam has a serious properties to non-linearity and discontinuity. And the section that in economical and efficinet design methods than the current standard design method is proposed.

Beam Crossectional Monitor of Cyclotron using VXI Bus (VXI Bus를 이용한 싸이클로트론의 빔 단면 표시장치)

  • Cho, Young-Ho;Ahn, Doo-Soo;Lee, Han-Seok;Kim, Yu-Seok;Chai, Jong-Seo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.442-444
    • /
    • 1998
  • We made the beam crosssectional monitor system which was possible to display the ion beam crosssection extracted from accelerator on personal computer monitor. Previous beam profile monitor system could detect the central beam position with limited low beam current, but this developed beam crosssectional monitor system could operate at the relatively higher beam current. In addition we realized the real time data taking system by adopting the VXI system for beam size, central position and crosssection.

  • PDF

Study on Generator Control for a Small X-Ray Tube (X-선 튜브의 고전압 발생장치 제어에 관한 연구)

  • Lee, Soonhyouk;Ji, Yun-Seo;Choi, Sang Gyu;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.248-254
    • /
    • 2014
  • The purpose of this study is to develope a control system for a small X-ray tube generator and investigate control methods for the X-ray generator. The small X-ray tube was developed for electronic brachytherapy, and thus, the new control method should be investigated, if the small X-ray tube is used for the imaging system. The Axxent S700 X-ray tube and the XF060NZZ485 high voltage generator were used to compose a X-ray imaging system and control board was developed by using AT90CAN128 MCU. The two control methods were investigated after tube voltage was set to 50 kV, one was filament current control method and the other was beam current control method. The former was subdivided into two methods according to the filament heating time, the 5 and the 10 seconds respectively. In the filament current method, the beam current did not rise up to the desired value, if the filament current had not been maintained for at least 10 seconds. The onset filament currents to generate beam current were varied from 1,300 to 1,350 mA and over 5 seconds were needed in order to reach the desired tube current value after beam current was generated. However, in the tube current control method, the beam current reached to the desired value without any time delay with the filament current of 1,500 mA. In this study, we found that the beam current control method was appropriate for the use of small X-ray tube developed for brachytherapy in the X-ray imaging system.

Characterization of electron beam (EB) welds for SUS310S

  • Kim, Hyun-Suk;Castro, Edward Joseph D.;Lee, Choong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.360-360
    • /
    • 2011
  • In this work, SUS310S used for valve plate assembly was electron beam (EB) welded to determine the influence of the parametric conditions on the characteristics of the weld and to minimize porosity and micro-fissures among others. The evolution in the weld geometry and microstructure was examined as a function of the process conditions such as beam current and focusing current under a constant welding speed and accelerating voltage. The integrity of the EB welds in SUS310S was examined for defects (e.g. cracking, porosity, etc.), adequate penetration depth, and tolerable weld width deviation for the various welding conditions. Optical microscopy (OM), x-ray photoelectron spectroscopy analysis (XPS), scanning electron microscopy (SEM) and 3D micro-computed tomography (Micro-CT) for the cross section analysis of the electron beam welded SUS310S were utilized. The tensile strength and hardness were analyzed for the mechanical properties of the EB weld. At the 6 kV accelerating voltage, it was determined that a satisfactory penetration depth and desirable weld width deviation requires a beam current of 30 mA and a focusing current of 0.687 A at the welding speed of 25 mm/sec.

  • PDF

Effect of high-energy neutron source on predicting the proton beam current in the ADS design

  • Zheng, Youqi;Li, Xunzhao;Wu, Hongchun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1600-1609
    • /
    • 2017
  • The accelerator-driven subcritical system (ADS) is driven by a neutron source from spallation reactions introduced by the injected proton beam. Part of the neutron source has energy as high as a few hundred MeV to a few GeV. The effects of high-energy source neutrons ($E_n$ > 20 MeV) are usually approximated by energy cut-off treatment in practical core calculations, which can overestimate the predicted proton beam current in the ADS design. This article intends to quantize this effect and propose a way to solve this problem. To evaluate the effects of high-energy neutrons in the subcritical core, two models are established aiming to cover the features of current experimental facilities and industrial-scale ADS in the future. The results show that high-energy neutrons with $E_n$ > 20 MeV are of small fraction (2.6%) in the neutron source, but their contribution to the source efficiency is about 23% for the large scale ADS. Based on this, a neutron source efficiency correction factor is proposed. Tests show that the new correction method works well in the ADS calculation. This method can effectively improve the accuracy of the prediction of the proton beam current.

Development of High Current Shunt Regulator for Beam Based Alignment in PLS 2GeV Storage Ring (포항방사광가속기 빔위치 정렬 용 정밀전원장치 개발)

  • Nam, S.H.;Suh, J.H.;Ha, K.M.;Huang, J.Y.;Ko, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2249-2251
    • /
    • 1997
  • Total 144 quadrupole magnets are installed in PLS. The magnets are connected in series with groups of two or 24. Each group is powered by a high-precision constant-current DC power supply. For the purpose of the beam based alignment of beam position monitors in the PLS, it is necessary to adjust the current of each quadrupole independently. To achieve this, a high current shunt regulator is designed. It can shunt a maximum 50 A of the quadrupole magnet current. The shunt regulator is programmable and the current amplitude can be varied linearly with a 12-bit resolution. Power transistors are used in the current shunt regulator. The operation of transistors is in linear region. The RS232C protocol is used for remote control and status report of the shunt regulator to the main control centre of the PLS. Preliminary result indicates that the calibration accuracy of the beam position monitor can be achievable in less than $10{\mu}m$.

  • PDF

Realization for Each Element for capturing image in Scanning Electron Microscopy (주사 전자 현미경에서 영상 획득에 필요한 구성 요소 구현)

  • Lim, Sun-Jong;Lee, Chan-Hong
    • Laser Solutions
    • /
    • v.12 no.2
    • /
    • pp.26-30
    • /
    • 2009
  • Scanning Electron Microscopy (SEM) includes high voltage generator, electron gun, column, secondary electron detector, scan coil system and image grabber. Column includes electron lenses (condenser lens and objective lens). Condenser lens generates fringe field, makes focal length and control spot size. Focal length represents property of lens. Objective lens control focus. Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lens and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. In this paper, we describe the result of research to develop the core elements for low-resolution SEM.

  • PDF