Browse > Article
http://dx.doi.org/10.1016/j.net.2017.08.019

Effect of high-energy neutron source on predicting the proton beam current in the ADS design  

Zheng, Youqi (School of Nuclear Science and Technology, Xi'an Jiaotong University)
Li, Xunzhao (School of Nuclear Science and Technology, Xi'an Jiaotong University)
Wu, Hongchun (School of Nuclear Science and Technology, Xi'an Jiaotong University)
Publication Information
Nuclear Engineering and Technology / v.49, no.8, 2017 , pp. 1600-1609 More about this Journal
Abstract
The accelerator-driven subcritical system (ADS) is driven by a neutron source from spallation reactions introduced by the injected proton beam. Part of the neutron source has energy as high as a few hundred MeV to a few GeV. The effects of high-energy source neutrons ($E_n$ > 20 MeV) are usually approximated by energy cut-off treatment in practical core calculations, which can overestimate the predicted proton beam current in the ADS design. This article intends to quantize this effect and propose a way to solve this problem. To evaluate the effects of high-energy neutrons in the subcritical core, two models are established aiming to cover the features of current experimental facilities and industrial-scale ADS in the future. The results show that high-energy neutrons with $E_n$ > 20 MeV are of small fraction (2.6%) in the neutron source, but their contribution to the source efficiency is about 23% for the large scale ADS. Based on this, a neutron source efficiency correction factor is proposed. Tests show that the new correction method works well in the ADS calculation. This method can effectively improve the accuracy of the prediction of the proton beam current.
Keywords
Accelerator-driven System; Correction Method; High-energy Neutron Source; Neutron Source Efficiency; Proton Beam Current;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. Bai, Conceptual design of lead-bismuth cooled accelerator driven subcritical reactor (LEBCAR), in: 15th International Conference on Emerging Nuclear Energy Systems (ICENES-15), San Francisco, California, USA, 2011.
2 K. Tsujimoto, T. Sasa, K. Nishihara, H. Oigawa, H. Takano, Neutronics design for lead-bismuth cooled accelerator-driven system for transmutation of minor actinide, J. Nucl. Sci. Technol. 41 (2004) 21-36.   DOI
3 X. Li, S. Zhou, Y. Zheng, K. Wang, H. Wu, Preliminary studies of a new accelerator-driven minor actinide burner in industrial scale, Nucl. Eng. Des. 292 (2015) 57-68.   DOI
4 D. Cheng, W. Wang, S. Yang, H. Deng, R. Wang, B. Wang, Design and optimization for the windowless target of the China nuclear waste transmutation reactor, Nucl. Eng. Technol. 48 (2016) 360-367.   DOI
5 H. Shahbunder, C.H. Pyeon, T. Misawa, J.Y. Lim, S. Shiroya, Effects of neutron spectrum and external neutron source on neutron multiplication parameters in accelerator-driven system, Ann. Nucl. Energy 37 (2010) 1785-1791.   DOI
6 D. Pelowitz, MCNPX User's Manual, Version 2.7. 0, LA-CP-11-00438, Los Alamos National Laboratory, Los Alamos, NM, 2011.
7 R.E. Prael, H. Lichtenstein, User Guide to LCS: The LAHET Code System, LA-UR-89-3014, Los Alamos National Laboratory, Los Alamos, NM, 1989.
8 X.-M.C. Team, MCNP-A General Monte Carlo N-particle Transport Code, Version 5, LA-UR-03-1987, Los Alamos National Laboratory, Los Alamos, NM, 2003.
9 M. Salvatores, I. Slessarev, G. Ritter, P. Fougeras, A. Tchistiakov, G. Youinou, A. Zaetta, Long-lived radioactive waste transmutation and the role of accelerator driven (hybrid) systems, Nucl. Instr. Meth. A 414 (1998) 5-20.   DOI
10 P. Seltborg, R. Jacqmin, Spallation neutron source effects in a sub-critical system, in: Int. Meeting Accelerator Applications/Accelerator Driven Transmutation Technology and Applications, Reno, NV USA, 2001, pp. 11-15.
11 A. Fokau, Y. Zhang, S. Ishida, J. Wallenius, A source efficient ADS for minor actinides burning, Ann. Nucl. Energy 37 (2010) 540-545.   DOI
12 H. Shahbunder, C.H. Pyeon, T. Misawa, J. Lim, S. Shiroya, Subcritical multiplication factor and source efficiency in accelerator-driven system, Ann. Nucl. Energy 37 (2010) 1214-1222.   DOI
13 M. Salvatores, I. Slessarev, A. Tchistiakov, G. Ritter, The potential of accelerator-driven systems for transmutation or power production using thorium or uranium fuel cycles, Nucl. Sci. Eng. 126 (1997) 333-340.   DOI
14 P. Seltborg, J. Wallenius, K. Tucek, W. Gudowski, Definition and application of proton source efficiency in accelerator-driven systems, Nucl. Sci. Eng. 145 (2003) 390-399.   DOI
15 P. Seltborg, R. Jacqmin, Investigation of neutron source effects in subcritical media and application to a model of the MUSE-4 experiments, in: Int. Meeting on Mathematical Methods for Nuclear Applications, Mathematics and Computation, Salt Lake City, Utah USA, 2001, pp. 9-13.
16 Y. Watanabe, K. Kosako, S. Kunieda, S. Chiba, R. Fujimoto, H. Harada, M. Kawai, F. Maekawa, T. Murata, H. Nakashima, K. Niita, N. Shimakawa, N. Yamano, T. Fukahori, Status of JENDL high energy file, J. Korean Phys. Soc. 59 (2011) 1040-1045.   DOI
17 Y. Zheng, T. Zu, H. Wu, L. Cao, C. Yang, The neutronics studies of a fusion fission hybrid reactor using pressure tube blankets, Fus. Eng. Des 87 (2012) 1589-1596.   DOI
18 A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, FLUKA: A Multi-particle Transport Code, CERN-2005-010, INFN TC_05/11, SLAC-R-773, INFN-CERN, 2005.
19 T. Sasa, K. Tsujimoto, T. Takizuka, H. Takano, Code development for the design study of the OMEGA Program accelerator-driven transmutation systems, Nucl. Instr. Meth. A 463 (2001) 495-504.   DOI
20 H. Takada, N. Yoshizawa, K. Kosako, K. Ishibashi, An Upgraded Version of the Nucleon Meson Transport Code: NMTC/JAERI97, JAERI-DATA/CODE 98-9005, Japan Atomic Energy Research Institution, 1998.
21 J. Cetnar, W. Gudowski, J. Wallenius, MCB: a continuous energy Monte Carlo Burnup simulation code, in: Proc. 5th OECD/NEA Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, OECD/NEA, Mol, Belgium, 1998, p. 523.
22 D.I. Poston, H.R. Trellue, Users Manual, Version 1.00 for Monteburns, Version 3.01, LA-UR-98-2718, Los Alamos National Laboratory, Los Alamos, NM, 1998.
23 W. Haeck, B. Verboomen, ALEPH 1.1. 2-A Monte Carlo Burn Up Code, SCK CEN, SCK CEN-BLG-1003 Rev. 0, 2006.
24 T. Sasa, T. Nishida, T. Takizuka, O. Sato, N. Yoshizawa, Neutronics and burnup analysis of an accelerator-based tru-nitride fuel transmutation system with the ATRAS code, Prog. Nucl. Energy 32 (1998) 485-490.   DOI
25 J. Ruggieri, J. Tommasi, J. Lebrat, C. Suteau, D. Plisson-Rieunier, C. De Saint Jean, G. Rimpault, J.C. Sublet, ERANOS 2.1: international code system for GEN IV fast reactor analysis, in: Proc. Int. Conf. on Advances in Nuclear Power Plants (ICAPP'06), Reno, NV USA, 2006, p. 6360.
26 S. Zhou, H. Wu, L. Cao, Y. Zheng, K. Huang, M. He, X. Li, LAVENDER: a steadystate core analysis code for design studies of accelerator driven subcritical reactors, Nucl. Eng. Des. 278 (2014) 434-444.   DOI
27 W. Kim, H.C. Lee, C.H. Pyeon, H.C. Shin, D. Lee, Monte Carlo analysis of the accelerator-driven system at Kyoto University Research Reactor Institute, Nucl. Eng. Technol. 48 (2016) 304-317.   DOI
28 W.S. Yang, L. Mercatali, T. Taiwo, R.N. Hill, Effects of buffer thickness on ATW blanket performances, in: Int. Meeting Accelerator Applications/Accelerator Driven Transmutation Technology and Applications, Reno, NV USA, 2001, pp. 11-15.