• Title/Summary/Keyword: Beacon node

Search Result 77, Processing Time 0.024 seconds

Vulnerability Analysis and Detection Mechanism against Denial of Sleep Attacks in Sensor Network based on IEEE 802.15.4 (IEEE 802.15.4기반 센서 네트워크에서 슬립거부 공격의 취약성 분석 및 탐지 메커니즘)

  • Kim, A-Reum;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.1-14
    • /
    • 2010
  • IEEE 802.15.4[1] has been standardized for the physical layer and MAC layer of LR-PANs(Low Rate-Wireless Personal Area Networks) as a technology for operations with low power on sensor networks. The standardization is applied to the variety of applications in the shortrange wireless communication with limited output and performance, for example wireless sensor or virtual wire, but it includes vulnerabilities for various attacks because of the lack of security researches. In this paper, we analyze the vulnerabilities against the denial of sleep attacks on the MAC layer of IEEE 802.15.4, and propose a detection mechanism against it. In results, we analyzed the possibilities of denial of sleep attacks by the modification of superframe, the modification of CW(Contention Window), the process of channel scan or PAN association, and so on. Moreover, we comprehended that some of these attacks can mount even though the standardized security services such as encryption or authentication are performed. In addition to, we model for denial of sleep attacks by Beacon/Association Request messages, and propose a detection mechanism against them. This detection mechanism utilizes the management table consisting of the interval and node ID of request messages, and signal strength. In simulation results, we can show the effect of attacks, the detection possibility and performance superiorities of proposed mechanism.

Path Loss Exponent Estimation for Indoor Wireless Sensor Positioning

  • Lu, Yu-Sheng;Lai, Chin-Feng;Hu, Chia-Cheng;Huang, Yueh-Min;Ge, Xiao-Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.243-257
    • /
    • 2010
  • Rapid developments in wireless sensor networks have extended many applications, hence, many studies have developed wireless sensor network positioning systems for indoor environments. Among those systems, the Global Position System (GPS) is unsuitable for indoor environments due to Line-Of-Sight (LOS) limitations, while the wireless sensor network is more suitable, given its advantages of low cost, easy installation, and low energy consumption. Due to the complex settings of indoor environments and the high demands for precision, the implementation of an indoor positioning system is difficult to construct. This study adopts a low-cost positioning method that does not require additional hardware, and uses the received signal strength (RSS) values from the receiver node to estimate the distance between the test objects. Since many objects in indoor environments would attenuate the radio signals and cause errors in estimation distances, knowing the path loss exponent (PLE) in an environment is crucial. However, most studies preset a fixed PLE, and then substitute it into a radio propagation loss model to estimate the distance between the test points; such method would lead to serious errors. To address this problem, this study proposes a Path Loss Exponent Estimation Algorithm, which uses only four beacon nodes to construct a radio propagation loss model for an indoor environment, and is able to provide enhanced positioning precision, accurate positioning services, low cost, and high efficiency.

Improved Fast Link-Setup Protocol for high-capacity Wireless Sensor Networks (대용량 무선 센서 네트워크를 위한 개선된 고속링크설정 알고리즘)

  • Kim, Byun-gon;Chung, Kyung-taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2387-2394
    • /
    • 2016
  • It is important to select the most appropriate channel for efficient transmission of massive data in wireless sensor network. In the fixed channel method for wireless sensor node, shortage of frequency may be a major constraint to support a variety of environments. In this paper, the method that seeks common channels between two nodes without common control channels in the existing wireless cognitive radio network is introduced in order to use efficiently the channel of wireless sensor network. The problem of existing method shows the severe degradation of performance that is caused by interference of linkage between selected channels, so that the sequential algorithm is suggested to improve the performance. From the results of computer simulation, the suggested method shows that the link can be set 50% faster than the other methods as the number of links increases because the beacon packet waiting time caused by the interference decreases remarkably.

A QoS Guaranteed Mechanism Using the FRSVP in the Hierarchical Mobile IPv6 (계층적 이동 IPv6 네트워크에서 FRSVP를 이용한 QoS 보증 방안)

  • Kim Bo-Gyun;Hong Choong-Seon;Lee Dae-Young
    • The KIPS Transactions:PartC
    • /
    • v.12C no.3 s.99
    • /
    • pp.419-428
    • /
    • 2005
  • This paper divides domains into the intra, inter domain according to the mobile node's movement and .proposes the Fast RSVP algorithm on the HMIPv6. It is done to advance reservation using L2 beacon signal when MN is located to overlapped cell area. In case of intra-region handoff, the advance reservation is reserved at the nearest common router and In case of inter-region handoff, it is done to advance reservation through the other site MAP's QA(QoS Agent) to the AR and optimize CN's path. Because of using the bandwidth efficiently and switching the data path quickly, the proposal algorithm minimizes the service disruption by data routing.

IDMMAC: Interference Aware Distributed Multi-Channel MAC Protocol for WSAN

  • Kakarla, Jagadeesh;Majhi, Banshidhar;Battula, Ramesh Babu
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1229-1242
    • /
    • 2017
  • In this paper, an interference aware distributed multi-channel MAC (IDMMAC) protocol is proposed for wireless sensor and actor networks (WSANs). The WSAN consists of a huge number of sensors and ample amount of actors. Hence, in the IDMMAC protocol a lightweight channel selection mechanism is proposed to enhance the sensor's lifetime. The IDMMAC protocol divides the beacon interval into two phases (i.e., the ad-hoc traffic indication message (ATIM) window phase and data transmission phase). When a sensor wants to transmit event information to the actor, it negotiates the maximum packet reception ratio (PRR) and the capacity channel in the ATIM window with its 1-hop sensors. The channel negotiation takes place via a control channel. To improve the packet delivery ratio of the IDMMAC protocol, each actor selects a backup cluster head (BCH) from its cluster members. The BCH is elected based on its residual energy and node degree. The BCH selection phase takes place whenever an actor wants to perform actions in the event area or it leaves the cluster to help a neighbor actor. Furthermore, an interference and throughput aware multi-channel MAC protocol is also proposed for actor-actor coordination. An actor selects a minimum interference and maximum throughput channel among the available channels to communicate with the destination actor. The performance of the proposed IDMMAC protocol is analyzed using standard network parameters, such as packet delivery ratio, end-to-end delay, and energy dissipation, in the network. The obtained simulation results indicate that the IDMMAC protocol performs well compared to the existing MAC protocols.

Tag-free Indoor Positioning System Using Wireless Infrared and Ultrasonic Sensor Grid (적외선 및 초음파센서 그리드를 활용한 태그가 없는 실내 위치식별 시스템)

  • Roh, Chanhwi;Kim, Yongseok;Shin, Changsik;Baek, Donkyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2022
  • In the most IPS (Indoor Positioning System), it is available to specify the user's movement by sending a specific signal from a tag such as a beacon to multiple receivers. This method is very efficiently used in places where the number of people is limited. On the other hand, in large commercial facilities, it is nearly difficult to apply the existing IPS method because it is necessary to attach a tag to each customer. In this paper, we propose a system that uses an external sensor grid to identify people's movement without using tags. Each sensor node uses both an ultrasonic sensor and an infrared sensor to monitor people's movements and sends collected data to the main server through wireless transmission for easy system maintenance. The operation was verified using the FPGA board, and we designed a VLSI circuit in 180nm process.

A Secure and Privacy-Aware Route Tracing and Revocation Mechanism in VANET-based Clouds (VANET 기반 클라우드 환경에서 안전과 프라이버시를 고려한 경로추적 및 철회 기법)

  • Hussain, Rasheed;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.5
    • /
    • pp.795-807
    • /
    • 2014
  • Vehicular Ad hoc Network (VANET) has gone through a rich amount of research and currently is making its way towards the deployment. However, surprisingly it evolved to rather more applications and services-rich breed referred to as VANET-based clouds due to the advancements in the automobile and communication technologies. Security and privacy have always been the challenges for the think tanks to deploy this technology on mass scale. It is even worse that some security issues are orthogonally related to each other such as privacy, revocation and route tracing. In this paper, we aim at a specific VANET-based clouds framework proposed by Hussain et al. namely VANET using Clouds (VuC) where VANET and cloud infrastructure cooperate with each other in order to provide VANET users (more precisely subscribers) with services. We specifically target the aforementioned conflicted privacy, route tracing, and revocation problem in VANET-based clouds environment. We propose a multiple pseudonymous approach for privacy reasons and leverage the beacons stored in the cloud infrastructure for both route tracing and revocation. In the proposed scheme, revocation authorities after colluding, can trace the path taken by the target node for a specified timespan and can also revoke the identity if needed. Our proposed scheme is secure, conditional privacy preserved, and is computationally less expensive than the previously proposed schemes.