• 제목/요약/키워드: BeO

검색결과 23,413건 처리시간 0.053초

Influence of KOH Solution on the Passivation of Al2O3 Grown by Atomic Layer Depostion on Silicon Solar Cell

  • 조영준;장효식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.299.2-299.2
    • /
    • 2013
  • We investigated the potassium remaining on a crystalline silicon solar cell after potassium hydroxide (KOH) etching and its effect on the lifetime of the solar cell. KOH etching is generally used to remove the saw damage caused by cutting a Si ingot; it can also be used to etch the rear side of a textured crystalline silicon solar cell before atomic layer-deposited Al2O3 growth. However, the potassium remaining after KOH etching is known to be detrimental to the efficiency of Si solar cells. In this study, we etched a crystalline silicon solar cell in three ways in order to determine the effect of the potassium remnant on the efficiency of Si solar cells. After KOH etching, KOH and tetramethylammonium hydroxide (TMAH) were used to etch the rear side of a crystalline silicon solar cell. To passivate the rear side, an Al2O3 layer was deposited by atomic layer deposition (ALD). After ALD Al2O3 growth on the KOH-etched Si surface, we measured the lifetime of the solar cell by quasi steady-state photoconductance (QSSPC, Sinton WCT-120) to analyze how effectively the Al2O3 layer passivated the interface of the Al2O3 layer and the Si surface. Secondary ion mass spectroscopy (SIMS) was also used to measure how much potassium remained on the surface of the Si wafer and at the interface of the Al2O3 layer and the Si surface after KOH etching and wet cleaning.

  • PDF

Cp-Ti 표면의 Hydroxyapatite+TiO2 복합 Sol 코팅에 관한 연구 (Hydroxyapatite+TiO2 Composite Sol Coating on Cp-Ti)

  • 김윤종;김택남;이성호
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.444-447
    • /
    • 2005
  • In this study, $Hydroxyapatite+TiO_2(HAp+TiO_2)$ composite sol coatings on Cp-Ti substrates were deposited by using a sol-gel derived precursor. Prior to hydroxyapatite coating, the samples were micropolished and divided into three sets. The first set was coated with hydroxyapatite (HAp) directly on Cp-Ti. The second set was first coated with intermediate titania layer and then coated with HAp. The third set samples were coated with $HAp+TiO_2$ (50:50) composite sol. Each samples were predried at $200^{\circ}C$, and heat treated at $600^{\circ}C$. The formation of hydroxyapatite has been confirmed by XRD analyses and the substrate material was found to be oxidized with negligible amount of CaO in the coating. The NaOH treated samples showed the presence of rutile crystal. The SEM studies revealed surface morphologies of each samples. $HAp+TiO_2$ composite sol coating layer was found to be smooth. The bonding strength of each samples were calculated using pull out tests. The bonding strength of the $HAp+TiO_2$ composite sol coating on substrate was 29.35MPa.

Utilizing Natural and Engineered Peroxiredoxins As Intracellular Peroxide Reporters

  • Laer, Koen Van;Dick, Tobias P.
    • Molecules and Cells
    • /
    • 제39권1호
    • /
    • pp.46-52
    • /
    • 2016
  • It is increasingly apparent that nature evolved peroxiredoxins not only as $H_2O_2$ scavengers but also as highly sensitive $H_2O_2$ sensors and signal transducers. Here we ask whether the $H_2O_2$ sensing role of Prx can be exploited to develop probes that allow to monitor intracellular $H_2O_2$ levels with unprecedented sensitivity. Indeed, simple gel shift assays visualizing the oxidation of endogenous 2-Cys peroxiredoxins have already been used to detect subtle changes in intracellular $H_2O_2$ concentration. The challenge however is to create a genetically encoded probe that offers real-time measurements of $H_2O_2$ levels in intact cells via the Prx oxidation state. We discuss potential design strategies for Prx-based probes based on either the redoxsensitive fluorophore roGFP or the conformation-sensitive fluorophore cpYFP. Furthermore, we outline the structural and chemical complexities which need to be addressed when using Prx as a sensing moiety for $H_2O_2$ probes. We suggest experimental strategies to investigate the influence of these complexities on probe behavior. In doing so, we hope to stimulate the development of Prx-based probes which may spearhead the further study of cellular $H_2O_2$ homeostasis and Prx signaling.

Real Time Monitoring of Ionic Species Generated from Laser-Ablated Pb$(Zr_{0.52}Ti_{0.48})O_3$ Target Using Pulsed-Field Time-Of-Flight Mass spectrometer

  • 최영구;임훙선;정광우
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권8호
    • /
    • pp.830-835
    • /
    • 1998
  • The characteristics of the ablation plume generated by 532 nm Nd: YAG laser irradiation of a Pb(Zr0.52Ti0.48)O3 (PZT) target have been investigated using a pulsed-field time-of-flight mass spectrometer (TOFMS). The relative abundance of O+, Ti+, Zr+, Pb+, TiO+, and ZrO+ ions has been measured and discussed. TiO+ and ZrO+ ions were also found to be particularly stable within the laser ablation plasma with respect to PbO+ species. The behavior of the temporal distributions of each ionic species was studied as a function of the delay time between the laser shot and the ion extraction pulse. The most probable velocity of each ablated ion is estimated to be Vmp=1.1-1.6x 105 cm/s at a laser fluence of 1.2 J/cm2, which is typically employed for the thin film deposition of PZT. The TOF distribution of Ti+ and Zr+ ions shows a trimodal distribution with one fast and two slow velocity components. The fast velocity component (6.8x 10' cm/s) appears to consist of directly ablated species via nonthermal process. The second component, originated from the thermal evaporation process, has a characteristic velocity of 1.4-1.6 x 105 cm/s. The slowest component (1.2 x 105 cm/s) is composed of a dissociation product formed from the corresponding oxide ion.

GROUP S3 CORDIAL REMAINDER LABELING FOR PATH AND CYCLE RELATED GRAPHS

  • LOURDUSAMY, A.;WENCY, S. JENIFER;PATRICK, F.
    • Journal of applied mathematics & informatics
    • /
    • 제39권1_2호
    • /
    • pp.223-237
    • /
    • 2021
  • Let G = (V (G), E(G)) be a graph and let g : V (G) → S3 be a function. For each edge xy assign the label r where r is the remainder when o(g(x)) is divided by o(g(y)) or o(g(y)) is divided by o(g(x)) according as o(g(x)) ≥ o(g(y)) or o(g(y)) ≥ o(g(x)). The function g is called a group S3 cordial remainder labeling of G if |vg(i)-vg(j)| ≤ 1 and |eg(1)-eg(0)| ≤ 1, where vg(j) denotes the number of vertices labeled with j and eg(i) denotes the number of edges labeled with i (i = 0, 1). A graph G which admits a group S3 cordial remainder labeling is called a group S3 cordial remainder graph. In this paper, we prove that square of the path, duplication of a vertex by a new edge in path and cycle graphs, duplication of an edge by a new vertex in path and cycle graphs and total graph of cycle and path graphs admit a group S3 cordial remainder labeling.

Influence of the SPS heating rate on the optical and mechanical properties of Y2O3-MgO nanocomposites

  • Yong, Seok-Min;Choi, Doo Hyun;Lee, Kisu;Ko, Seok-Young;Cheong, Dong-Ik
    • Journal of Ceramic Processing Research
    • /
    • 제20권1호
    • /
    • pp.59-62
    • /
    • 2019
  • Y2O3-MgO nanocomposites are promising materials for hypersonic infrared windows and domes due to their excellent midIR transmittance and mechanical properties. In this work, influence of SPS heating rate on the microstructure, IR transmittance, and mechanical properties of Y2O3-MgO nanocomposites was investigated. It was found that the average grain size decreases with a decreasing heating rate, which can be attributed to high defect concentration by rapid heating and deformation during densification. Also, the residual porosity decreases with a decreasing heating rate, which is ascribed to the enhancement of grain boundary diffusion by a large grain-boundary area (a small grain size). Consequently, high transmittance and hardness were attained by the low heating rate. On the other hand, the mechanical strength showed little difference with the heating rate change, which is somewhat different from the general knowledge on ceramics and will be discussed in this letter.

ESR, ESEM을 이용한 이온 교환된 MoH-SAPO-34에 대한 Mo의 화학종, 위치 및 흡착상호작용에 관한 연구 (Study on Mo(V) Species, Location and Adsorbates Interactions in MoH-SAPO-34 by Employing ESR and Electron Spin-Echo Modulation Spectroscopies)

  • 백건호;장창기;류창국;조영환;소현수
    • 대한화학회지
    • /
    • 제46권1호
    • /
    • pp.26-36
    • /
    • 2002
  • $MoO_3$와 H-SAPO-34의 고체상 반응은 상자기성의 Mo(V) 화학종을 띤다. 탈수하면 Mo(V) 화학 종이 약하게 나타나지만 계속적으로 활성화 시키면 ESR로 규명할 수 있는 $Mo(V)_{5c}$$Mo(V)_{6c}$와 같은 Mo(V) 화학종이 생성된다. ESR과 ESEM 자료들은 $(MoO_2)^+$$(MoO)^{3+}$ 같은 옥소-몰리브덴 화학 종을 보여준다. $(MoO_2)^+$ 화학 종이 다음과 같이 더 합리적인 것 같이 보여진다. H-SAPO-34는 낮은 골격전하를 갖기 때문에 높은 양전하를 갖는 $(MoO)^{3+}$는 쉽게 안정화 되지 못한다. 소성된 H-SAPO-34와 도데카몰리브덴 규산 용액 사이의 용액 상태 반응은 단지 $MoO^{2+}$ 화학 종만을 발생한다. 마름모형 ESR 신호는 $D_2O$, $CD_3OH$, $CH_3CH_2OD$$ND_3$를 흡착할 때 관측되었다. Mo(V) 화학 종의 배위구조와 위치는 트리 펄스 전자 스핀반향 자료로 측정하였다. MoH-SAPO-34에 메탄올, 에틸렌 암모니아와 물이 흡착될 때 3분자, 1분자, 1분자와 1분자가 $(MoO_2)^+$에 각각 직접 배위하였다.

도로구조물 적용을 위한 광촉매 콘크리트의 질소산화물(NOx) 제거효율 평가 (Evaluation of NOx Removal Efficiency of Photocatalytic Concrete for Road Structure)

  • 김영규;홍성재;이경배;이승우
    • 한국도로학회논문집
    • /
    • 제16권5호
    • /
    • pp.49-58
    • /
    • 2014
  • PURPOSES : In areas of high traffic volume, such as expressway across large cities, the amount of nitrogen oxides (NOx) emitted into the atmosphere as air pollution can be significant since NOx gases are the major cause of smog and acid rain. Recently, the importance of NOx removal has arisen in the world. Titanium dioxide ($TiO_2$), that is one of photocatalytic reaction material, is very efficient for removing NOx. The NOx removing mechanism of $TiO_2$ is the reaction of solar photocatalysis. Therefore, $TiO_2$ in road structure concrete need to be contacted with ultraviolet rays (UV) to be activated. In general, $TiO_2$ concretes are produced by replacement of $TiO_2$ as a part of concrete binder. However, considerable portion of $TiO_2$ in concrete cannot contact with the pollutant in the air and UV. Therefore, $TiO_2$ penetration method using the surface penetration agents is attempted as an alternative in order to locate $TiO_2$ to the surface of concrete structure. METHODS : This study aimed to evaluate the NOx removal efficiency of photocatalytic concrete due to various $TiO_2$ application method such as mix with $TiO_2$, surface spray($TiO_2$ penetration method) on hardened concrete and fresh concrete using surface penetration agents. The NOx removal efficiency of $TiO_2$ concrete was confirmed by NOx Analyzing System based on the specification of ISO 22197-1. RESULTS : The NOx removal efficiency of mix with $TiO_2$ increased from 11 to 25% with increasing of replacement ratio from 3 to 7%. In case of surface spray on hardened concrete, the NOx removal efficiency was about 50% due to application amount of $TiO_2$ with surface penetration agents as 300, 500 and 700g/m2. The NOx removal efficiency of surface spray on fresh concrete due to all experimental conditions, on the other hand, which was very low within 10%. CONCLUSIONS : It was known that the $TiO_2$ penetration method as surface spray on hardened concrete was a good alternative in order to remove the NOx gases for concrete road structures.

경남 밀양지역 납석광상과 안산암질 모암의 지구화학적 연구 (A Geochemical Study on Pyrophyllite Deposits and Andesitic Wall-Rocks in the Milyang Area, Kyeongnam Province)

  • 오대균;전효택;민경원
    • 자원환경지질
    • /
    • 제25권1호
    • /
    • pp.27-39
    • /
    • 1992
  • Several pyrophyllite deposits occur around the Milyang area where Cretaceous andesitic rocks and spatially related granitic rocks are widely distributed. Pyrophyllite ores consist mainly of pyrophyllite, and quartz with small amount of sericite, pyrite, dumortierite, and diaspore. The andesitic rocks and spatially related granitic rocks in this area suggest that they could be formed from the same series of a calc-alkaline magma series. The contents of $SiO_2$, $Al_2O_3$, LOI(loss on ignition) are enriched, and $K_2O$, $Na_2O$, CaO, MgO, $Fe_2O_3$ are depleted in altered andesitic rocks and ores. Enrichment of As, Cr, Sr, V, Sb and depletion of Ba, Cs, Ni, Rb, U, Y, Co, Sc, Zn are characteristic during mineralization. The pyrophyllite ores can be discriminated from the altered-and unaltered wall-rocks by an increasing of $(La/Lu)_{cn}$ from 4.18~22.13 to 8.98~55.05. In R-mode cluster analysis, Yb-Lu-Y, La-Ce-Hf-Th-U-Zr, $TiO_2-V-Al_2O_3$, Sm-Eu, $CaO-Na_2O-MnO$, Cu-Zn-Ag, $K_2O-Rb$ are closely correlated. In the discriminant analysis of multi-element data, $P_2O_5$, As, Cr and $Fe_2O_3$, Sr are helpful to identify the ores from the unaltered-and altered wall-rocks. In the factor analysis, the factors of alteration of andesitic rocks and ore mineralization were extracted. In the change of ions per unit volume, $SiO_2$, $Al^{3+}$ and LOI are enriched and $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Mn^{2+}$ and $Fe^{3+}$ are depleted during the alteration processes. The Milyang and the Sungjin pyrophyllite deposits could be mineralized by hydrothermal alteration in a geochemical condition of low activity ratio of alkaline ions to hydrogen ion with reference to spatially related granitic rocks.

  • PDF

Chromite 물질의 자기상호작용에 관한 뫼스바우어 분광연구 (Mössbauer Studies of Changed Interaction on Cr Ions in Chromite)

  • 최강룡;김철성
    • 한국자기학회지
    • /
    • 제17권1호
    • /
    • pp.47-50
    • /
    • 2007
  • 최근 geometrical frustration 현상 및 멀티페로익 효과가 Cr 이온의 나선 스핀 구조에 기인하는 것으로 해석되고 있다. 이에 본 연구에서는 Cr 이온 자리에 Fe을 치환하여 $CoCrFeO_4$를 제조하였고, $M\"{o}ssbauer$ 분광법에 의해 자기적 미세 구조의 상관관계를 연구하였다. 졸겔법을 이용하여 Fd3m의 cubic 스피넬 구조를 갖는 $CoCr_2O_4,\;CoCrFeO_4$ 단일상을 합성하였고, Rietveld 법에 의한 분석결과 격자상수는 $a_0=8.340$에서 $8.377{\AA}$로 증가 하였으며, Cr, Fe 이온은 모두 팔면체 구조에 위치하는 것으로 분석되었다. 자기 상전이 온도는 $T_N=97K$에서 320 K로 증가하였으며, 상호작용의 변화에 따라서 field cooled 온도에 따른 자화 곡선의 변화를 관측하였다. $M\"{o}ssbauer$ 스펙트럼 분석결과 4.2 K에서 공명흡수선에 대한 초미세자기장($H_{hf}$) 값은 각각 507, 492 kOe 정도로 나타났으며, 이성질체 이동치($\delta$)는 0.33, 0.34 mm/s 정도로 Fe 이온상태가 둘 다 +3 가의 이온상태임을 알 수 있었다.