• 제목/요약/키워드: Bcl-X Protein

검색결과 148건 처리시간 0.032초

Role of Expression of Inflammatory Mediators in Primary and Recurrent Lumbar Disc Herniation

  • Dagistan, Yasar;Cukur, Selma;Dagistan, Emine;Gezici, Ali Riza
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권1호
    • /
    • pp.40-46
    • /
    • 2017
  • Objective: To assess role of some inflammatory mediators in patients with primary and recurrent lumbar disc herniation. Expression of IL-6, transforming growth factor (TGF)-1, insulin-like growth factor (IGF)-1, and Bcl-2-associated X protein (BAX) have been shown to be more intense in the primary group than the recurrent goup, but this mediators may be important aspects prognostic. Methods: 19 patients underwent primary and revision operations between June 1, 2009 and June 1, 2014, and they were included in this study. The 19 patients' intervertebral disc specimens obtained from the primary procedures and reoperations were evaluated. Expression of IL-6, TGF-1, IGF-1, and BAX were examined immunohistochemically in the 38 biopsy tissues obtained from the primary and recurrent herniated intervertebral discs during the operation. Results: For IL-6 expression in the intervertebral disc specimens, there was no difference between the groups. The immunohistochemical study showed that the intervertebral disc specimens in the primary group were stained intensely by TGF-1 compared with the recurrent group. Expression of IGF-1 in the primary group was found moderate. In contrast, in the recurrent group of patients was mild expression of IGF-1. The primary group intervertebral disc specimens were stained moderately by BAX compared with the recurrent group. Conclusion: The results of our prognostic evaluation of patients in the recurrent group who were operated due to disc herniation suggest that mediators may be important parameters.

Impact of imatinib administration on the mouse ovarian follicle count and levels of intra-ovarian proteins related to follicular quality

  • Kim, Se Jeong;Kim, Tae Eun;Jee, Byung Chul
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제49권2호
    • /
    • pp.93-100
    • /
    • 2022
  • Objective: The impact of imatinib, a tyrosine kinase inhibitor, on ovarian follicles and several proteins related to follicular function and apoptosis was investigated in mice. Methods: Saline, cyclophosphamide (Cp; 50 or 75 mg/kg), or imatinib (7.5 or 15 mg/kg) was injected once intraperitoneally into female B6D2F1 mice (18 mice in each group). In multiple ovarian sections, the number of various types of follicles and the proportion of good-quality (G1) follicles were counted. The levels of six proteins (anti-Müllerian hormone [AMH], BCL-xL, BAX, acid sphingomyelinase [A-SMase], caspase-3, and α-smooth muscle actin [α-SMA]) within the whole ovaries were quantified using Western blots. Results: Compared to the saline group, a significant reduction of the primordial follicle count was observed in the group treated with imatinib 7.5 and 15 mg/kg, as well as in the group treated with Cp 75 mg/kg. Administration of Cp significantly decreased the proportion of G1 primordial follicles, but administration of imatinib did not. No differences in the AMH, anti-apoptotic BCLX-L, pro-apoptotic BAX, and A-SMase levels in the ovarian tissues were observed among the five groups. However, caspase-3 and α-SMA levels were significantly higher in the imatinib and Cp groups than in the saline group. Conclusion: The administration of imatinib to mice significantly reduced the primordial follicle count and increased the protein levels of caspase-3 and α-SMA. Our findings suggest that imatinib potentially exerts ovarian toxicity via apoptotic processes, similarly to Cp.

Polygonum cuspidatum stem extract (PSE) ameliorates dry eye disease by inhibiting inflammation and apoptosis

  • Park, Bongkyun;Jo, Kyuhyung;Lee, Tae Gu;Lee, Ik Soo;Kim, Jin Sook;Kim, Chan-Sik
    • 운동영양학회지
    • /
    • 제23권4호
    • /
    • pp.14-22
    • /
    • 2019
  • [Purpose] Here, we aimed to determine the effect of Polygonum cuspidatum stem extract (PSE) on exorbital lacrimal gland-excised rat models and hyperosmotic stress-stimulated human conjunctival cells (HCCs). [Methods] Seven week old male Wistar rats were divided into six groups. Only the rats in the control group (NOR, n=5) did not undergo surgery. Three days after the surgery, the exorbital lacrimal gland-excised rats were randomly allocated to five groups: (1) vehicle-treated dry-eyed rats (DED, n=5); (2) PSE (10 mg/kg) treated DED rats (PSE-10, n=5); (3) PSE (100 mg/kg) treated DED rats (PSE-100, n=5); and (4) PSE (250 mg/kg) treated DED rats (PSE-250, n=5). In addition, the HCC line was co-treated with hyperosmolar media (528 mOsm) and PSE (1-100 μg/ml). [Results] PSE treatment restored the tear volume and goblet cell density by inhibiting severe corneal irregularities and damage. The treatment with PSE significantly attenuated the hyperosmolar stress-induced inflammation and cell death through the suppression of mRNA expression levels of Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1β (IL-1β), and Interferon-γ (IFN-γ), and the expression of Bcl-2-associated X protein (Bax) as well as the activation of caspase-3 in vitro. [Conclusion] The inhibitory effects of PSE treatment on dry eye disease indicate the potential of nutritional intervention by PES against inflammatory diseases without adverse effects.

Licochalcone D Inhibits Skin Epidermal Cells Transformation through the Regulation of AKT Signaling Pathways

  • Sun-Young Hwang;Kwanhwan Wi;Goo Yoon;Cheol-Jung Lee;Soong-In Lee;Jong-gil Jung;Hyun-Woo Jeong;Jeong-Sang Kim;Chan-Heon Choi;Chang-Su Na;Jung-Hyun Shim;Mee-Hyun Lee
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.682-691
    • /
    • 2023
  • Cell transformation induced by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) is a critical event in cancer initiation and progression, and understanding the underlying mechanisms is essential for the development of new therapeutic strategies. Licorice extract contains various bioactive compounds, which have been reported to have anticancer and anti-inflammatory effects. This study investigated the cancer preventive efficacy of licochalcone D (LicoD), a chalcone derivative in licorice extract, in EGF and TPA-induced transformed skin keratinocyte cells. LicoD effectively suppressed EGF-induced cell proliferation and anchorage-independent colony growth. EGF and TPA promoted the S phase of cell cycle, while LicoD treatment caused G1 phase arrest and down-regulated cyclin D1 and up-regulated p21 expression associated with the G1 phase. LicoD also induced apoptosis and increased apoptosis-related proteins such as cleaved-caspase-3, cleaved-caspase-7, and Bax (Bcl2-associated X protein). We further investigated the effect of LicoD on the AKT signaling pathway involved in various cellular processes and found decreased p-AKT, p-GSK3β, and p-NFκB expression. Treatment with MK-2206, an AKT pharmacological inhibitor, suppressed EGF-induced cell proliferation and transformed colony growth. In conclusion, this study demonstrated the potential of LicoD as a preventive agent for skin carcinogenesis.

상기생과 봉독이 간암 세포주 Hep G2에 대해 미치는 항암 기전 비교 (Comparative Study of Korean Mistletoe Lectin and Bee Venom on the Anti-Cancer Effect and Its Mechanisms of Action in Hepatocellular Carcinoma Cells)

  • 김승욱;김보람;허경;임성우
    • 대한한방내과학회지
    • /
    • 제30권4호
    • /
    • pp.845-857
    • /
    • 2009
  • Background and Objectives : Korean mistletoe lectin (Viscum album coloratum agglutinin, VCA) and bee venom (BV) have been reported to induce apoptosis in various cancer cell lines in vitro and to show antitumor activity against a variety of tumors in animal models. However, the comparative effect of VCA and BV on the anti-cancer effect and mechanisms of action has not been determined. In this study, the effect in a human hepatocellular carcinoma cell line, Hep G2 cells, was examined. Methods : Cytotoxic effects of VCA and BV on Hep G2 cells were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay in litro. The apoptotic cell death was then confirmed by propidium iodide staining and DNA fragmentation analysis. The mechanisms of action were examined by the expression of anti-apoptotic proteins and activation of mitogen-activated protein kinases. The involvement of kinase was examined in VCA or BV-induced apoptosis by using kinase inhibitors. Results : VCA and BV killed Hep G2 cells in a time and dose-dependent manner. Treatment of Hep G2 cells with VCA activated poly (ADP-ribose) polymerase-1 (PARP-1) known as a marker of apoptosis, and mitogen-activated protein kinases signaling pathways including MAPK/ERK, p38 MAPK and JNK. BV also activated PARP-1, MAPK/ERK. and p38 MAPK but not JNK. The expression level of anti-apoptotic molecule, Bcl-X, was decreased by VCA treatment but not by BV. Finally, the phosphorylation level of ERM proteins involved in the cytoskeleton homeostasis was decreased by both stimuli. VCA-induced apoptosis was partially inhibited by in the presence of JNK and p38 inhibitor, but BV only by p38 inhibitor. Conclusions : VCA-induced apoptosis is dependent on the activation of p38 and JNK. while BV-induced apoptosis is mediated by p38 activation in Hep G2 cells.

  • PDF

Protein Tyrosine Kinases, $p56^{lck}\;and\;p59^{fyn}$, MAP Kinase JNK1 Provide an Early Signal Required for Upregulation of Fas Ligand Expression in Aburatubolactam C-Induced Apoptosis of Human Jurkat T Cells

  • BAE MYUNG AE;JUN DO YOUN;KIM KYUNG MIN;KIM SANG KOOK;CHUN JANG SOO;TAUB DENNIS;PARK WAN;MOON BYUNG-JO;KIM YOUNG HO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.756-766
    • /
    • 2005
  • The signaling mechanism underlying aburatubolactam C-induced FasL upregulation was investigated in human Jurkat T cells. After treatment with aburatubolactam C, the src-family PTKs $p56^{lck}\;and\;p59^{fyn}$, and MAP kinases ERK2 and JNK1, were activated prior to FasL upregulation; Both $p56^{lck}\;and\;p59^{fyn}$ were directly activated 2.4- and 2.2-fold, respectively, in vitro by aburatubolactam C. The aburatubolactam C-induced cellular changes, including the activation of ERK2 and INK1, and FasL upregulation, were completely prevented by the PTK inhibitor genistein. The activation of protein kinase C (PKC$\delta,\;\epsilon\;and\;\mu$ was also induced following aburatubolactam C treatment. Although the activation of $p56^{lck}$ and tyrosine phosphorylation of the cellular proteins were not blocked by the PKC inhibitor GFl09203X, the activation of ERK2 was completely abrogated, along with a detectably enhanced JNK1 activation; FasL upregulation, and apoptosis. However, the FasL upregulation and apoptosis were significantly inhibited by the PKC activator PMA, with a remarkable increase in the ERK2 activation. The cytotoxic effect of aburatubolactam C was reduced in the presence of the anti-Fas neutralizing antibody ZB-4. Although ectopic expression of Bcl-2 failed to completely block the cytotoxicity of aburatubolactam C, it was clearly suppressed. The c-Fos mRNA expression was upregulated in a biphasic manner, where the second phasic expression overlapped with the FasL upregulation. Accordingly, these results demonstrate that aburatubolactam C-induced apoptosis is exerted, at least in part, by FasL upregulation dictated by activation of the PTK ($p56^{lck}\;and\;p59^{fyn}$) /JNKI pathway, which is negatively affected by the concurrent activation of the PKC/ERK2 pathway proximal to PTK activation.

Millettia erythrocalyx 에탄올 추출물의 항산화 활성 및 항암 활성에 관한 연구 (Antioxidative and Anticancer Activities of Ethanol Extract of Millettia erythrocalyx)

  • 진수정;오유나;손유리;최선미;권현주;김병우
    • 생명과학회지
    • /
    • 제28권1호
    • /
    • pp.50-57
    • /
    • 2018
  • Millettia erythrocalyx는 콩과(Fabaceae)에 속하는 식물로 중국, 태국, 인도 등 열대 아열대 지역에 분포하며, 항바이러스 활성을 보유하고 있다는 보고가 있으나 항산화능과 항암활성 등에 관한 연구는 보고된 바가 없다. 따라서 본 연구에서는 M. erythrocalyx의 에탄올 추출물(EEME)을 사용하여 항산화능을 측정하고, 인체간암세포주인 HepG2에 대한 항암활성과 그 분자적 기전에 관하여 분석하였다. 먼저 DPPH radical scavenging activity를 통해 분석한 결과, EEME의 $IC_{50}$$2.74{\mu}g/ml$로 뛰어난 항산화능을 보유하였음을 확인하였다. 또한 EEME 농도 의존적으로 HepG2 세포의 성장을 억제하였다. EEME의 HepG2 세포 사멸 효과의 기전을 분석하기 위하여 세포주기를 분석한 결과, EEME 농도의존적으로 SubG1 세포가 증가하였으며, Annexin V 염색과 DAPI 염색을 통해 apoptotic 세포 및 apoptotic body가 증가됨을 확인하였다. 또한 apoptosis 관련 단백질들의 발현변화를 분석한 결과, EEME 처리에 의해 사멸수용체인 Fas와 pro-apoptotic 단백질인 Bax의 발현이 증가되었으며, caspase-3, -8, -9가 활성화되고 최종적으로 PARP가 분해되어 apoptosis가 유도되었음을 확인하였다. 이러한 결과들로부터 EEME는 내인성 및 외인성 경로를 통한 apoptosis 유도에 의하여 HepG2 세포의 증식을 억제하는 항암활성을 보유하였음을 확인하였다.

Esculetin의 caspase-3 활성을 통한 U937 인체 혈구암세포의 세포사멸 유도 (Esculetin Induces Apoptosis through Caspase-3 Activation in Human Leukemia U937 Cells)

  • 박철;현숙경;신우진;정경태;최병태;권현주;황혜진;김병우;박동일;이원호;최영현
    • 생명과학회지
    • /
    • 제19권2호
    • /
    • pp.249-255
    • /
    • 2009
  • Esculetin, a coumarin compound, has been known to inhibit proliferation and induce apoptosis in several types of human cancer cells. However, the molecular mechanisms involved in esculetin-induced apoptosis are still uncharacterized in human leukemia cells. In this study, we have investigated whether esculetin exerts anti-proliferative and apoptotic effects on human leukemia U937 cells. It was found that esculetin could inhibit cell viability in a time-dependent manner, which was associated with the induction of apoptotic cell death such as increased populations of apoptotic- sub G1 phase. Apoptosis of U937 cells by esculetin was associated with an inhibition of Bcl-2/Bax binding activity, formation of tBid, down-regulation of X-linked inhibitor of apoptotic protein (XIAP) expression, and up-regulation of death receptor 4 (DR4) and FasL expression. Esculetin treatment also induced the degradation of ${\beta}$-catenin and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Furthermore, a caspase-3 specific inhibitor, z-DEVD-fmk, significantly inhibited sub-G1 phase DNA content, morphological changes and degradation of ${\beta}$-catenin and DEE45/ICAD. These results indicated that a key regulator in esculetin-induced apoptosis was caspase-3 in human leukemia U937 cells.