• Title/Summary/Keyword: Bcl-2 family

Search Result 227, Processing Time 0.029 seconds

TIMP-1 in the regulation of ECM and apoptosis

  • Liu, Xu-Wen;Jung, Ki-Kyung;Kim, Hyeong-Reh-Choi
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.89-96
    • /
    • 2002
  • The importance of apoptosis in normal development and pathogenesis has been well recognized, and explosive progress towards dissecting its commitment step has been made during the past decade. Mitochondria, Apaf-1, caspase, and bcl-2 family members play central roles in the commitment step. However, it is still unclear how upstream cell survival pathways regulate apoptosis. It is also unknown whether the bcl-2 family members have any effect on the upstream survival pathways. We have demonstrated that the anti-apoptotic gene product bcl-2 greatly induces expression of the tissue inhibitor of metalloproteinase-1 (TIMP-1) in human breast epithelial cells. Surprisingly, we found that TIMP-1, like bcl-2, is a potent inhibitor of apoptosis induced by a variety of stimuli. Functional studies indicate that TIMP-1 inhibits a classical apoptotic pathway mediated by caspases, and that focal adhesion kinase (FAK)/Pl 3-kinase and mitogen activated protein kinase (MAPK) are critical for TIMP- 1 -mediated cell survival. We also showed specific association of TIMP-1 with the cell surface. Consistently, a 150-H)a surface protein was identified in MCF10A cells that specifically binds TIMP-1. Taken together, we hypothesize that TIMP-I binding on the cell surface induces a cell survival pathway that regulates the common apoptosis commitment step. The results of these studies will address a new paradigm in the regulation of apoptosis by an extracellular molecule TIMP-1, and also greatly enhance our understanding of TIMP-1's pleiotropic activity in many physiological and pathological processes. This information may also be useful in designing more rational therapeutic interventions aimed at modulating the anti-apoptotic activity of TIMP-1 .

  • PDF

Extract of Broussometia kazinoki Induces Apoptosis Through the Mitochondria/Caspase Pathway in A549 Lung Cancer Cells (A549세포에서 닥나무 추출물의 미토콘드리아/Caspase 경로를 통한 Apoptosis 유도작용)

  • Kim, Tae Hyeon;Kim, Dan Hee;Mun, Yeun Ja;Lim, Kyu Sang;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.150-156
    • /
    • 2016
  • Extract of Broussometia kazinoki Rhizodermatis has been traditionally used for geopoong, diuresis, hwalhyeol. In the present study, the apoptotic effect of methanol extract of Broussometia kazinoki (MBK) were investigated. Cell viability of A549 cells was measured by MTT assay. Apoptosis-related protein and MAPK protein levels were measured by Western blot. Chromatin condensation of A549 cells was stained with DAPI. MBK inhibited cell proliferation of A549 cell. Based on DAPI staining, MBK-treated cells manifested nuclear shrinkage, condensation and fragmentation. Treatment of A549 cells with MBK resulted in activation of the caspase-3, -8, -9 and cleavage of poly ADP-ribose polymerase (PARP). In the upstream, MBK increased the expressions Bax and Bak, decreased the expression of Bcl-2, and augmented the Bax/Bcl-2 ratio. MBK-induced apoptosis was accompanied by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK)-1. These results suggest that MBK induced apoptosis in A549 cells through Bcl-2 family protein-mediated mitochondria/caspase-3 dependent pathway. In addition, MBK increased the activation of ASK-1, which are critical upsteam signals for JNK/p38 MAPK activation in A549 cancer cells.

Styrylpyrone Derivative Induces Apoptosis through the Up-Regulation of Bax in the Human Breast Cancer Cell Line MCF-7

  • Chien, Alvin Lee Teck;Pihie, Azimahtol Hawariah Lope
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.269-274
    • /
    • 2003
  • In the fight against cancer, novel chemotherapeutic agents are constantly being sought to complement existing drugs. Various studies have presented evidence that the apoptosis that is induced by these anticancer agents is implicated in tumor regression, and Bcl-2 family genes play a part in apoptosis following treatment with various stimuli. Here, we present data that a styrylpyrone derivative (SPD) that is extracted from the plant Goniothalamus sp. showed cytotoxic effects on the human breast cancer cell line MCF-7. SPD significantly increased apoptosis in MCF-7 cells, as visualized by phase contrast microscopy and evaluated by the Tdt-mediated dUTP nick end-labeling assay and nuclear morphology. Western blotting and immunostaining revealed up-regulation of the proapoptotic Bax protein expression. SPD, however, did not affect the expression of the anti-apoptotic protein, Bcl-2. These results, therefore, suggest SPD as a potent cytotoxic agent on MCF-7 cells by inducing apoptosis through the modulation of Bax levels.

Age- and Area-Dependent Distinct Effects of Ethanol on Bax and Bcl-2 Expression in Prenatal Rat Brain

  • Lee, Hae-Young;Naha, Nibedita;Kim, Jong-Hun;Jo, Mi-Ja;Min, Kwan-Sik;Seong, Hwan-Hoo;Shin, Dong-Hoon;Kim, Myeong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1590-1598
    • /
    • 2008
  • Cell proliferation and differentiation are critical processes in a developing fetal rat brain, during which programmed cell death (PCD) also plays an important role. One of the decisive factors for PCD is Bcl-2 family proteins, where Bax induces cell death, whereas Bcl-2 acts as an inhibitor of PCD. As maternal drinking is known to cause fetal alcohol syndrome (FAS) or malformation of the fetal brain during pregnancy, the objective of the present study was to investigate whether maternal ethanol exposure alters the PCD-related Bax and Bcl-2 protein expression during fetal brain development. Pregnant female rats were orally treated with 10% ethanol and the subsequent expressions of the Bax and Bcl-2 proteins examined in the fetal brain, including the forebrain, midbrain, and hindbrain, from gestational day (GD) 15.5 to GD 19.5, using Western blots, in situ hybridization, and immunohistochemistry. With regard to the ratio of Bcl-2 to Bax proteins (Bcl-2/Bax), the Bax protein was dominant in the forebrain and midbrain of the control GD 15.5 fetuses, except for the hindbrain, when compared with the respective ethanol-treated groups. Moreover, Bcl-2 became dominant in the midbrain of the control GD 17.5 fetuses when compared with the ethanol-treated group, representing an alternation of the natural PCD process by ethanol. Furthermore, a differential expression of the Bcl-2 and Bax proteins was found in the differentiating and migrating zones of the cortex, hippocampus, thalamus, and cerebellum. Thus, when taken together, the present results suggest that ethanol affects PCD in the cell differentiation and migration zones of the prenatal rat brain by modulating Bax and Bcl-2 expression in an age- and area-dependent manner. Therefore, this is the first evidence that ethanol may alter FAS-associated embryonic brain development through the alteration of Bax and Bc1-2 expression.

Induction of Apoptosis in HT-29 Human Colon Cancer Cells by the Pepper Component Piperine (후추의 주요 성분인 Piperine의 대장암세포 세포사멸 유도 효과)

  • Kim, Eun-Ji;Park, Hee-Sook;Shin, Min-Jeong;Shin, Hyun-Kyung;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.442-450
    • /
    • 2009
  • Piperine is an alkaloid-amine found in pepper and has been reported to have anticarcinogenic properties. To explore the possibility that piperine has cancer chemopreventive and chemotherapeutic effects in colon cancer, we examined whether piperine inhibits the growth of HT-29 human colon cancer cells and investigated the mechanisms for this effect. Cells were cultured with various concentrations ($0{\sim}40{\mu}M$) of piperine. Piperine decreased the cell viability and induced apoptosis of HT-29 cells. Western blot analysis of total cell lysates revealed that piperine decreases the protein levels of Bcl-2, Mcl-1, and intact Bid but increases Bik levels. Piperine increased the percentage of cells with depolarized mitochondrial membrane, and the release of cytochrome c into cytoplasm. Piperine induced the cleavage of poly (ADP-ribose) polymerase and caspases 8, 9, 7, and 3 and increased the Fas levels. In addition, piperine significantly decreased the protein levels of survivin. The present results indicate that piperine inhibits the growth of HT-29 colon cancer cells by the induction of apoptosis, which may be mediated by its ability to change the Bcl-2 family proteins, increase the activation of caspases, and decrease survivin levels. Overall, our findings suggest that piperine has cancer chemotherapeutic effects in colon cancer.

Antiproliferative and Cytotoxic Effects of Resveratrol in Mitochondria-Mediated Apoptosis in Rat B103 Neuroblastoma Cells

  • Rahman, Md. Ataur;Kim, Nam-Ho;Kim, Seung-Hyuk;Oh, Sung-Min;Huh, Sung-Oh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.321-326
    • /
    • 2012
  • Resveratrol, a natural compound, has been shown to possess anti-cancer, anti-aging, anti-inflammatory, anti-microbial, and neuroprotective activities. In this study, we examined the antiproliferative and cytotoxicity properties of resveratrol in Rat B103 neuroblastoma cells; although it's molecular mechanisms for the biological effects are not fully defined. Here, we examined the cellular cytotoxicity of resveratrol by cell viability assay, antiproliferation by BrdU assay, DNA fragmentation by DNA ladder assay, activation of caspases and Bcl-2 family proteins were detected by western blot analyses. The results of our investigation suggest that resveratrol increased cellular cytotoxicity of Rat B103 neuroblastoma cells in a dose-and time-dependent manner with $IC_{50}$ of 17.86 ${\mu}M$ at 48 h. On the other hand, incubation of neuroblastoma cells with resveratrol resulted in S-phase cell cycle arrests which dose-dependently and significantly reduced BrdU positive cells through the downregulation of cyclin D1 protein. In addition, resveratrol dose-dependently and significantly downregulated the expression of anti-apoptotic protein includes Bcl-2, Bcl-xL and Mcl-1 and also activates cleavage caspase-9 and-3 via the downregulation of procaspase-9 and -3 in a dose-dependent manner which indicates that involvement of intrinsic mitochondria-mediated apoptotic pathway. In conclusion, resveratrol increases cellular cytotoxicity and inhibits the proliferation of B103 neuroblastoma cells by inducing mitochondria-mediated intrinsic caspase dependent pathway which suggests this natural compound could be used as therapeutic purposes for neuroblastoma malignancies.

Effect of Epigallocatechin Gallate on Apoptosis in MDA-MB-231 Human Breast Cancer Cells (Epigallocatechin Gallate가 인체 유방암 세포인 MDA-MB-231의 세포사멸에 미치는 영향)

  • Hong, Eun-Jung;Kim, Woo-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.9
    • /
    • pp.1114-1119
    • /
    • 2008
  • Among the numerous polyphenols isolated from green tea, epigallocatechin gallate (EGCG) is a predominate and is considered to be a major therapeutic agent. To elucidate the mechanical insights of anti-tumor effect, EGCG was applied to human breast cancer MDA-MB-231 cells. We investigated the effect of EGCG on protein and mRNA expression of proteins related to cell apoptosis in MDA-MB-231 human breast cancer cell lines. We also identified caspase-3 activity. We cultured MDA-MB-231 cells in the presence of 0, 5, 10, and $20\;{\mu}M$ of EGCG. Protein and mRNA expression of bcl-2 were decreased dose-dependently in cells treated with EGCG. However, protein and mRNA expression of bax were increased (p<0.05). Caspase-3 activities were increased dose-dependently in cells treated with EGCG. These results suggest that EGCG induces cell apoptosis by increase of caspase activity through decreasing of protein and mRNA expression of bcl-2 and increasing of protein and mRNA expression of bax.

Exosome-derived microRNA-29c Induces Apoptosis of BIU-87 Cells by Down Regulating BCL-2 and MCL-1

  • Xu, Xiang-Dong;Wu, Xiao-Hou;Fan, Yan-Ru;Tan, Bing;Quan, Zhen;Luo, Chun-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3471-3476
    • /
    • 2014
  • Background: Aberrant expression of the microRNA-29 family is associated with tumorigenesis and cancer progression. As transport carriers, tumor-derived exosomes are released into the extracellular space and regulate multiple functions of target cells. Thus, we assessed the possibility that exosomes could transport microRNA-29c as a carrier and correlations between microRNA-29c and apoptosis of bladder cancer cells. Materials and Methods: A total of 28 cancer and adjacent tissues were examined by immunohistochemistry to detect BCL-2 and MCL-1 expression. Disease was Ta-T1 in 12 patients, T2-T4 in 16, grade 1 in 8, 2 in 8 and 3 in 12. The expression of microRNA-29c in cancer tissues was detected by quantitative reverse transcriptase PCR (QRT-PCR). An adenovirus containing microRNA-29c was used to infect the BIU-87 human bladder cancer cell line. MicroRNA-29c in exosomes was measured by QRT-PCR. After BIU-87 cells were induced by exosomes-derived microRNA-29c, QRT-PCR was used to detect the level of microRNA-29c. Apoptosis was examined by flow cytometry and BCL-2 and MCL-1 mRNA expressions were assessed by reverse transcription-polymerase chain reaction. Western blotting was used to determine the protein expression of BCL-2 and MCL-1. Results: The expressions of BCL-2 and MCL-1 protein were remarkably increased in bladder carcinoma (p<0.05), but was found mainly in the basal and suprabasal layers in adjacent tissues. The expression of microRNA-29c in cancer tissues was negatively correlated with the BCL-2 and MCL-1. The expression level of microRNA-29c in exosomes and BIU-87 cells from the experiment group was higher than that in control groups (p<0.05). Exosome-derived microRNA-29c induced apoptosis (p<0.01). Although only BCL-2 was reduced at the mRNA level, both BCL-2 and MCL-1 were reduced at the protein level. Conclusions: Human bladder cancer cells infected by microRNA-29c adenovirus can transport microRNA-29c via exosomes. Moreover, exosome-derived microRNA29c induces apoptosis in bladder cancer cells by down-regulating BCL-2 and MCL-1.

The p90rsk-mediated signaling of ethanol-induced cell proliferation in HepG2 cell line

  • Kim, Han Sang;Kim, Su-Jin;Bae, Jinhyung;Wang, Yiyi;Park, Sun Young;Min, Young Sil;Je, Hyun Dong;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • Ribosomal S6 kinase is a family of serine/threonine protein kinases involved in the regulation of cell viability. There are two subfamilies of ribosomal s6 kinase, (p90rsk, p70rsk). Especially, p90rsk is known to be an important downstream kinase of p44/42 MAPK. We investigated the role of p90rsk on ethanol-induced cell proliferation of HepG2 cells. HepG2 cells were treated with 10~50 mM of ethanol with or without ERK and p90rsk inhibitors. Cell viability was measured by MTT assay. The expression of pERK1, NHE1 was measured by Western blots. The phosphorylation of p90rsk was measured by ELISA kits. The expression of Bcl-2 was measured by qRT-PCR. When the cells were treated with 10~30 mM of ethanol for 24 hour, it showed significant increase in cell viability versus control group. Besides, 10~30 mM of ethanol induced increased expression of pERK1, p-p90rsk, NHE1 and Bcl-2. Moreover treatment of p90rsk inhibitor attenuated the ethanol-induced increase in cell viability and NHE1 and Bcl-2 expression. In summary, these results suggest that p90rsk, a downstream kinase of ERK, plays a stimulatory role on ethanol-induced hepatocellular carcinoma progression by activating anti-apoptotic factor Bcl-2 and NHE1 known to regulate cell survival.

ABT-737 ameliorates docetaxel resistance in triple negative breast cancer cell line

  • Hwang, Eunjoo;Hwang, Seong-Hye;Kim, Jongjin;Park, Jin Hyun;Oh, Sohee;Kim, Young A;Hwang, Ki-Tae
    • Annals of Surgical Treatment and Research
    • /
    • v.95 no.5
    • /
    • pp.240-248
    • /
    • 2018
  • Purpose: This study aimed to validate the synergistic effect of ABT-737 on docetaxel using MDA-MB-231, a triple negative breast cancer (TNBC) cell line overexpressing B-cell lymphoma-2 (Bcl-2). Methods: Western blot analysis was performed to assess expression levels of Bcl-2 family proteins and caspase-related molecules. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution was determined by flow cytometry analysis. Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk) was used for pretreatment to assess the role of caspases. Results: Cell viability of MDA-MB-231 after combination treatment with ABT-737 and docetaxel was significantly lower than that after docetaxel or ABT-737 monotherapy based on MTT assay (both P < 0.001), with a combination index of 0.41. The proportion of sub-G1 population after combination treatment was significantly higher than that after docetaxel or ABT-737 monotherapy (P = 0.001, P = 0.003, respectively). Pretreatment with z-VAD-fmk completely restored cell viability of MDA-MB-231 from apoptotic cell death induced by combination therapy (P = 0.001). Although pro-caspase-8 or Bid did not show significant change in expression level, pro-casepase-9 showed significantly decreased expression after combination treatment. Cleaved caspase-3 showed increased expression while poly (ADP-ribose) polymerase cleavage was induced after combination treatment. However, hypoxia-inducible factor 1-alpha and aldehyde dehydrogenase 1 totally lost their expression after combination treatment. Conclusion: Combination of ABT-737 with docetaxel elicits synergistic therapeutic effect on MDA-MB-231, a TNBC cell line overexpressing Bcl-2, mainly by activating the intrinsic pathway of apoptosis. Therefore, adjunct of ABT-737 to docetaxel might be a new therapeutic option to overcome docetaxel resistance of TNBCs overexpressing Bcl-2.