• Title/Summary/Keyword: Bayesian network

Search Result 516, Processing Time 0.023 seconds

Bayesian Network-based Probabilistic Management of Software Metrics for Refactoring (리팩토링을 위한 소프트웨어 메트릭의 베이지안 네트워크 기반 확률적 관리)

  • Choi, Seunghee;Lee, Goo Yeon
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1334-1341
    • /
    • 2016
  • In recent years, the importance of managing software defects in the implementation stage has emerged because of the rapid development and wide-range usage of intelligent smart devices. Even if not a few studies have been conducted on the prediction models for software defects, their outcomes have not been widely shared. This paper proposes an efficient probabilistic management model of software metrics based on the Bayesian network, to overcome limits such as binary defect prediction models. We expect the proposed model to configure the Bayesian network by taking advantage of various software metrics, which can help in identifying improvements for refactoring. Once the source code has improved through code refactoring, the measured related metric values will also change. The proposed model presents probability values reflecting the effects after defect removal, which can be achieved by improving metrics through refactoring. This model could cope with the conclusive binary predictions, and consequently secure flexibilities on decision making, using indeterminate probability values.

Automatic fire detection system using Bayesian Networks (베이지안 네트워크를 이용한 자동 화재 감지 시스템)

  • Cheong, Kwang-Ho;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.87-94
    • /
    • 2008
  • In this paper, we propose a new vision-based fire detection method for a real-life application. Most previous vision-based methods using color information and temporal variation of pixel produce frequent false alarms because they used a lot of heuristic features. Furthermore there is also computation delay for accurate fire detection. To overcome these problems, we first detected candidated fire regions by using background modeling and color model of fire. Then we made probabilistic models of fire by using a fact that fire pixel values of consecutive frames are changed constantly and applied them to a Bayesian Network. In this paper we used two level Bayesian network, which contains the intermediate nodes and uses four skewnesses for evidence at each node. Skewness of R normalized with intensity and skewnesses of three high frequency components obtained through wavelet transform. The proposed system has been successfully applied to many fire detection tasks in real world environment and distinguishes fire from moving objects having fire color.

Reasoning Occluded Objects in Indoor Environment Using Bayesian Network for Robot Effective Service (로봇의 효과적인 서비스를 위해 베이지안 네트워크 기반의 실내 환경의 가려진 물체 추론)

  • Song Youn-Suk;Cho Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 2006
  • Recently the study on service robots has been proliferated in many fields, and there are active developments for indoor services such as supporting for elderly people. It is important for robot to recognize objects and situations appropriately for effective and accurate service. Conventional object recognition methods have been based on the pre-defined geometric models, but they have limitations in indoor environments with uncertain situation such as the target objects are occluded by other ones. In this paper we propose a Bayesian network model to reason the probability of target objects for effective detection. We model the relationships between objects by activities, which are applied to non-static environments more flexibly. Overall structure is constructed by combining common-cause structures which are the units making relationship between objects, and it makes design process more efficient. We test the performance of two Bayesian networks for verifying the proposed Bayesian network model through experiments, resulting in accuracy of $86.5\%$ and $89.6\%$ respectively.

Context based User Required Services Reasoning Model (상황 정보 기반 사용자 요구 서비스 추론 모델)

  • Ko, Kwang-Enu;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • It was already realized at a current technological level of home network systems that the systems recognizes a user's simple order and carry out the order in the ubiquitous computing environment. However home is not a simple environment consisting into a large number of family members, so various order and situation would be needed accordingly. From now on we need to reach the technological level to infer that how is the user's behavior patterns and what kinds of service is the fittest to user who belong to the ubiquitous computing environment by using the result of the context interpreter. In this regards, active inferred-model needs to be suggested upgrading user's command into one step more higher level than the simple one adapting diversified feature. This study would like to suggest this active model recognizing context, which is user's environmental information applying basic network and inferring Context-based Service that user wants through the recognized result This study proposes a new method that can infer the user's desire in ubiquitous computing environment. First of all, we define a context as user's information of ubiquitous computing environment situation that user belongs to and we classify the context into 4W1H(Where, Who, When, What) formats. We construct Bayesian network and put the factor of context use as Bayesian network nodes. As a result, we can infer the user's behavior pattern and most proper service for user in the intelligent space from the probabilistic result of Bayesian network.

Inter-Factor Determinants of Return Reversal Effect with Dynamic Bayesian Network Analysis: Empirical Evidence from Pakistan

  • HAQUE, Abdul;RAO, Marriam;QAMAR, Muhammad Ali Jibran
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.3
    • /
    • pp.203-215
    • /
    • 2022
  • Bayesian Networks are multivariate probabilistic factor graphs that are used to assess underlying factor relationships. From January 2005 to December 2018, the study examines how Dynamic Bayesian Networks can be utilized to estimate portfolio risk and return as well as determine inter-factor relationships among reversal profit-generating components in Pakistan's emerging market (PSX). The goal of this article is to uncover the factors that cause reversal profits in the Pakistani stock market. In visual form, Bayesian networks can generate causal and inferential probabilistic relationships. Investors might update their stock return values in the network simultaneously with fresh market information, resulting in a dynamic shift in portfolio risk distribution across the networks. The findings show that investments in low net profit margin, low investment, and high volatility-based designed portfolios yield the biggest dynamical reversal profits. The main triggering aspects related to generation reversal profits in the Pakistan market, in the long run, are net profit margin, market risk premium, investment, size, and volatility factor. Investors should invest in and build portfolios with small companies that have a low price-to-earnings ratio, small earnings per share, and minimal volatility, according to the most likely explanation.

Bayesian Network Analysis for the Dynamic Prediction of Financial Performance Using Corporate Social Responsibility Activities (베이지안 네트워크를 이용한 기업의 사회적 책임활동과 재무성과)

  • Sun, Eun-Jung
    • Management & Information Systems Review
    • /
    • v.34 no.5
    • /
    • pp.71-92
    • /
    • 2015
  • This study analyzes the impact of Corporate Social Responsibility (CSR) activities on financial performances using Bayesian Network. The research tries to overcome the issues of the uniform assumption of a linear function between financial performance and CSR activities in multiple regression analysis widely used in previous studies. It is required to infer a causal relationship between activities of CSR which have an impact on the financial performances. Identifying the relationship would empower the firms to improve their financial performance by informing the decision makers about the different CSR activities that influence the financial performance of the firms. This research proposes General Bayesian Network (GBN) and presents Markov Blanket induced from GBN. It is empirically demonstrated that all the proposals presented in this study are statistically significant by the results of the research conducted by Korean Economic Justice Institute (KEJI) under Citizen's Coalition for Economic Justice (CCEJ) which investigated approximately 200 companies in Korea based on Korean Economic Justice Institute Index (KEJI index) from 2005 to 2011. The Bayesian Network to effectively infer the properties affecting financial performances through the probabilistic causal relationship. Moreover, I found that there is a causal relationship among CSR activities variable; that is Environment protection is related to Customer protection, Employee satisfaction, and firm size; Soundness is related to Total CSR Evaluation Score, Debt-Assets Ratio. Though the what-if analysis, I suggest to the sensitive factor among the explanatory variables.

  • PDF

Development of Facial Expression Recognition System based on Bayesian Network using FACS and AAM (FACS와 AAM을 이용한 Bayesian Network 기반 얼굴 표정 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.562-567
    • /
    • 2009
  • As a key mechanism of the human emotion interaction, Facial Expression is a powerful tools in HRI(Human Robot Interface) such as Human Computer Interface. By using a facial expression, we can bring out various reaction correspond to emotional state of user in HCI(Human Computer Interaction). Also it can infer that suitable services to supply user from service agents such as intelligent robot. In this article, We addresses the issue of expressive face modeling using an advanced active appearance model for facial emotion recognition. We consider the six universal emotional categories that are defined by Ekman. In human face, emotions are most widely represented with eyes and mouth expression. If we want to recognize the human's emotion from this facial image, we need to extract feature points such as Action Unit(AU) of Ekman. Active Appearance Model (AAM) is one of the commonly used methods for facial feature extraction and it can be applied to construct AU. Regarding the traditional AAM depends on the setting of the initial parameters of the model and this paper introduces a facial emotion recognizing method based on which is combined Advanced AAM with Bayesian Network. Firstly, we obtain the reconstructive parameters of the new gray-scale image by sample-based learning and use them to reconstruct the shape and texture of the new image and calculate the initial parameters of the AAM by the reconstructed facial model. Then reduce the distance error between the model and the target contour by adjusting the parameters of the model. Finally get the model which is matched with the facial feature outline after several iterations and use them to recognize the facial emotion by using Bayesian Network.

Client-Server System Architecture for Inferring Large-Scale Genetic Interaction Networks (대규모 유전자 상호작용 네트워크 추론을 위한 클라이언트-서버 시스템 구조)

  • Kim, Yeong-Hun;Lee, Pil-Hyeon;Lee, Do-Heon
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.38-45
    • /
    • 2006
  • We present a client-server system architecture for inferring genetic interaction networks based on Bayesian networks. It is typical to take tens of hours when genome-wide large-scale genetic interaction networks are inferred in the form of Bayesian networks. To deal with this situation, batch-style distributed system architectures are preferable to interactive standalone architectures. Thus, we have implemented a loosely coupled client-server system for network inference and user interface. The network inference consists of two stages. Firstly, the proposed method divides a whole gene set into overlapped modules, based on biological annotations and expression data together. Secondly, it infers Bayesian networks for each module, and integrates the learned subnetworks to a global network through common genes across the modules.

  • PDF

Network based Anomaly Intrusion Detection using Bayesian Network Techniques (네트워크 서비스별 이상 탐지를 위한 베이지안 네트워크 기법의 정상 행위 프로파일링)

  • Cha ByungRae;Park KyoungWoo;Seo JaeHyun
    • Journal of Internet Computing and Services
    • /
    • v.6 no.1
    • /
    • pp.27-38
    • /
    • 2005
  • Recently, the rapidly development of computing environments and the spread of Internet make possible to obtain and use of information easily. Immediately, by opposition function the Hacker's unlawful intrusion and threats rise for network environments as time goes on. Specially, the internet consists of Unix and TCP/IP had many vulnerability. the security techniques of authentication and access controls cannot adequate to solve security problem, thus IDS developed with 2nd defence line. In this paper, intrusion detection method using Bayesian Networks estimated probability values of behavior contexts based on Bayes theory. The contexts of behaviors or events represents Bayesian Networks of graphic types. We profiled concisely normal behaviors using behavior context. And this method be able to detect new intrusions or modificated intrusions. We had simulation using DARPA 2000 Intrusion Data.

  • PDF

A Purchase Pattern Analysis Using Bayesian Network and Neural Network (베이지안 네트워크와 신경망을 이용한 구매패턴 분석)

  • Hwang Jeong-Sik;Pi Su-Young;Son Chang-Sik;Chung Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.306-311
    • /
    • 2005
  • To analyze the consumer's purchase pattern, we must consider a factor which is a cultural, social, individual, psychological and so on. If we consider the internal state by the consumer's purchase, Both the consumer's purchase action and the purchase factor can be predicted, so the corporation can use effectively in suitable goods development in a consumer's preference. These factors need a technology that treat uncertain information, because it is difficult to analyze by directly information processing. Therefore, bayesian network manages elements those the observation of inner state such as consumer's purchase is difficult. In addition, it is interpretable about data that the observation is impossible. In this paper, we examine the seller's know-how and the way of consumer's purchase to analyze consumer's purchase action pattern through goods purchase. Also, we compose the bayesian network based on the examined data, and propose the method that predicts purchase patterns. Finally, we remove the data including unnecessary attribute using the bayesian network, and analyze the consumer's Purchase pattern using Kohonen's SOM method.