In this study, an alternative spatial analysis method against conventional methods such as Thiessen method, Inverse Distance method, and Kriging method, named Spatial-Analysis Neural-Network (SANN) is presented. It is based on neural network modeling and provides a nonparametric mean estimator and also estimators of high order statistics such as standard deviation and skewness. In addition, it provides a decision-making tool including an estimator of posterior probability that a spatial variable at a given point will belong to various classes representing the severity of the problem of interest and a Bayesian classifier to define the boundaries of subregions belonging to the classes. In this paper, the SANN is implemented to be used for analyzing a mean annual precipitation filed and classifying the field into dry, normal, and wet subregions. For an example, the whole area of South Korea with 39 precipitation sites is applied. Then, several useful results related with the spatial variability of mean annual precipitation on South Korea were obtained such as interpolated field, standard deviation field, and probability maps. In addition, the whole South Korea was classified with dry, normal, and wet regions.
Kim, Keun Won;Shin, Dae Han;Choi, Joo-Ho;Shin, KiSu
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.41
no.8
/
pp.619-624
/
2013
To predict the probabilistic service life, statistical factors should be included to consider the uncertainty of parameters. Generally the probabilistic analysis is one of the common methods to account the uncertainty of parameters on the structural failure. In order to apply probabilistic analysis on the deterministic life analysis, it would be necessary to introduce Probability of Failure(PoF) and conduct risk assessment. In this work, we have studied probabilistic risk assessment of aircraft structures by using PoF approach. To achieve this goal, the Bayesian method was utilized to model PoF estimation since this method is known as the proper method to express the uncertainty of parameters. A series of proof tests were also conducted in order to verify the result of PoF estimation. The results from this efforts showed that the PoF estimation model can calculate quantitatively the value of PoF. Furthermore effectiveness of risk assessment approach for the aircraft structures was also demonstrated.
MES(Manufacturing Execution System) is a control system which supports basic activities(scheduling, working process and qualify management, etc) to execute working on the shop floor. As especially MES is a system to decrease the gap between production planning and operating, it executes functions that make decision between management and labor using real-time data. MES for real-time information processing requires certain conditions such as data modeling of RFID, which has recently attracted attentions, and monitoring of each product unit from manufacture to sales. However, in the middle of processing the unit with a RFID tag, transponders(readers) can't often read the tag due to reader's malfunctions, intentional damages, loss and the circumstantial effects; for that reason, users are unable to confirm the location of the product unit. In this case, users cannot avoid tracing the path of units with uncertain clues. In this paper, we suggest that the unique MES based on RFID and Bayesian Network can immediately track the product unit, and show how to evaluate it.
Kim, Tae-Jeong;So, Byung-Jin;Ryou, Min-Suk;Kwon, Hyun-Han
Journal of Korea Water Resources Association
/
v.49
no.4
/
pp.315-325
/
2016
Generally, a natural river discharge is highly regulated by the hydraulic structures, and the regulated flow is substantially different from natural inflow characteristics for the use of water resources planning. The natural inflow data are necessarily required for hydrologic analysis and water resources planning. This study aimed to develop an integrated model for more reliable simulation of daily dam inflow. First, a piecewise Kernel-Pareto distribution was used for rainfall simulation model, which can more effectively reproduce the low order moments (e.g. mean and median) as well as the extremes. Second, a Bayesian Markov Chain Monte Carlo scheme was applied for the SAC-SMA rainfall-runoff model that is able to quantitatively assess uncertainties associated with model parameters. It was confirmed that the proposed modeling scheme is capable of reproducing the underlying statistical properties of discharge, and can be further used to provide a set of plausible scenarios for water budget analysis in water resources planning.
Journal of the Korean Data and Information Science Society
/
v.28
no.1
/
pp.153-161
/
2017
Branching processes which is used for epidemic dispersion as stochastic process model have advantages to estimate parameters by real data. We have to estimate both mean and dispersion parameter in order to use the negative binomial distribution as an offspring distribution on branching processes. In existing studies on biology and epidemiology, it is estimated using maximum-likelihood methods. However, for most of epidemic data, it is hard to get the best precision of maximum-likelihood estimator. We suggest a Bayesian inference that have good properties of statistics for small-sample. After estimating dispersion parameter we modelled the posterior distribution for 2015 Korea MERS cases. As the result, we found that the estimated dispersion parameter is relatively stable no matter how we assume prior distribution. We also computed extinction probabilities on branching processes using estimated dispersion parameters.
Lee, Jeong Jin;Kim, Nam Hee;Kwon, Hye Ji;Kim, Yongku
The Korean Journal of Applied Statistics
/
v.27
no.6
/
pp.947-958
/
2014
Understanding extreme precipitation events is very important for flood planning purposes. Especially, the r-year return level is a common measure of extreme events. In this paper, we present a spatial analysis of precipitation return level using hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitations and daily precipitation above a high threshold at 62 stations in Korea with generalized extreme value(GEV) and generalized Pareto distribution(GPD), respectively. The spatial dependence among return levels is incorporated to the model through a latent Gaussian process of the GEV and GPD model parameters. We apply the proposed model to precipitation data collected at 62 stations in Korea from 1973 to 2011.
Journal of the Korea institute for structural maintenance and inspection
/
v.16
no.5
/
pp.29-39
/
2012
The main objective is to predict the future degradation and maintenance budget for a suspension bridge system. Bayesian inference is applied to find the posterior probability density function of the source parameters (damage indices and serviceability), given ten years of maintenance data. The posterior distribution of the parameters is sampled using a Markov chain Monte Carlo method. The simulated risk prediction for decreased serviceability conditions are posterior distributions based on prior distribution and likelihood of data updated from annual maintenance tasks. Compared with conventional linear prediction model, the proposed quadratic model provides highly improved convergence and closeness to measured data in terms of serviceability, risky factors, and maintenance budget for bridge components, which allows forecasting a future performance and financial management of complex infrastructures based on the proposed quadratic stochastic regression model.
It has been well recognized that extreme rainfall process often features a nonstationary behavior, which may not be effectively modeled within a stationary frequency modeling framework. Moreover, extreme rainfall events are often described by a two (or more)-component mixture distribution which can be attributed to the distinct rainfall patterns associated with summer monsoons and tropical cyclones. In this perspective, this study explores a Mixture Distribution based Nonstationary Frequency (MDNF) model in a changing rainfall patterns within a Bayesian framework. Subsequently, the MDNF model can effectively account for the time-varying moments (e.g. location parameter) of the Gumbel distribution in a two (or more)-component mixture distribution. The performance of the MDNF model was evaluated by various statistical measures, compared with frequency model based on both stationary and nonstationary mixture distributions. A comparison of the results highlighted that the MDNF model substantially improved the overall performance, confirming the assumption that the extreme rainfall patterns might have a distinct nonstationarity.
In this study, from January 2015 to April 2020, we propose a stochastic volatility model to capture the leverage effect on daily freight yields in the dry cargo market and analyze the freight yields. Estimation involving the Bayesian Markov Chain Monte Carlo method for the leverage effect based on the negative correlation that exists between returns and volatility in stochastic volatility analysis yields similar estimates, and the statistcs indicates significant. That is, the results of the empirical analysis show that the degree of correlation between returns and volatility, and the magnitude and sign of fluctuations differ, which suggests that taking into account the leverage effect in the SV model improves the goodness of fit of the estimates. In addition to the statistical significance of the estimated model's leverage effect, the analysis by log predictive power score presents the estimated results with improved predictive power of the model considering the leveraged effect. These astatistically significant empirical results show that the stochastic volatility model considering the leverage effect is important for freight rate risk modeling in the marine industry.
Although longitudinal studies mainly produce multivariate longitudinal data, most of existing statistical models analyze univariate longitudinal data and there is a limitation to explain complex correlations properly. Therefore, this paper describes various methods of modeling the covariance matrix to explain the complex correlations. Among them, modified Cholesky decomposition, modified Cholesky block decomposition, and hypersphere decomposition are reviewed. In this paper, we review these methods and analyze Korean children and youth panel (KCYP) data are analyzed using the Bayesian method. The KCYP data are multivariate longitudinal data that have response variables: School adaptation, academic achievement, and dependence on mobile phones. Assuming that the correlation structure and the innovation standard deviation structure are different, several models are compared. For the most suitable model, all explanatory variables are significant for school adaptation, and academic achievement and only household income appears as insignificant variables when cell phone dependence is a response variable.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.