• 제목/요약/키워드: Bayesian model selection

검색결과 161건 처리시간 0.024초

Statistical analysis of KNHANES data with measurement error models

  • Hwang, Jinseub
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권3호
    • /
    • pp.773-779
    • /
    • 2015
  • We study a statistical analysis about the fifth wave data of the Korea National Health and Nutrition Examination Survey based on linear regression models with measurement errors. The data is obtained from a national population-based complex survey. To demonstrate the availability of measurement error models, two results between the general linear regression model and measurement error model are compared based on the model selection criteria which are Akaike information criterion and Bayesian information criterion. For our study, we use the simulation extrapolation algorithm for measurement error model and the jackknife method for the estimation of standard errors.

AR(1)모형에서 자기회귀계수의 다중검정을 위한 베이지안방법 (Bayesian Method for the Multiple Test of an Autoregressive Parameter in Stationary AR(L) Model)

  • 김경숙;손영숙
    • 응용통계연구
    • /
    • 제16권1호
    • /
    • pp.141-150
    • /
    • 2003
  • 본 논문은 베이즈인자(Bayes factor)를 이용하여 정상(stationary) AR(1)모형의 자기회귀계수에 대해 다중검정하는 방법을 제시한다. 모수들에 대한 사전분포로는 무정보 사전분포(noninformative prior distribution)를 가정한다. 이러한 경우에 통상적으로 사용되는 베이즈인자를 근사없이 정확히 계산하여 각 모형에 대한 사후확률(posterior probability)을 얻는다. 최종적으로 모의실험 자료 및 실제 자료에 적용하여 이론의 결과가 잘 부합되는지를 검토한다.

Bayesian Changepoints Detection for the Power Law Process with Binary Segmentation Procedures

  • Kim Hyunsoo;Kim Seong W.;Jang Hakjin
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.483-496
    • /
    • 2005
  • We consider the power law process which is assumed to have multiple changepoints. We propose a binary segmentation procedure for locating all existing changepoints. We select one model between the no-changepoints model and the single changepoint model by the Bayes factor. We repeat this procedure until no more changepoints are found. Then we carry out a multiple test based on the Bayes factor through the intrinsic priors of Berger and Pericchi (1996) to investigate the system behaviour of failure times. We demonstrate our procedure with a real dataset and some simulated datasets.

베이지안 다변량 선형 모형을 이용한 청소년 패널 데이터 분석 (KCYP data analysis using Bayesian multivariate linear model)

  • 이인선;이근백
    • 응용통계연구
    • /
    • 제35권6호
    • /
    • pp.703-724
    • /
    • 2022
  • 다변량 경시적 자료 분석은 반복 측정된 자료에 존재하는 상관관계를 올바르게 추정하면서 자료를 분석해야 한다. 경시적 연구에서는 다변량 경시적 자료가 주로 생성되지만, 기존 통계적 모형은 대부분 단변량으로 분석되어 다변량 경시적 자료에 존재하는 복잡한 상관관계를 제대로 설명하지 못하게 된다. 따라서 본 논문에서는 복잡한 상관관계를 설명하기 위해 공분산 행렬을 모형화하는 다양한 방법에 대해 고찰한다. 그 중 수정된 콜레스키 분해, 수정된 콜레스키 블록분해와 초구분해를 살펴본다. 그리고 일반화 자기회귀모수 행렬이 가지는 희박성 문제를 해결하기 위해 베이지안 방법을 이용하여 청소년 패널 데이터를 분석한다. 청소년 패널 데이터는 다변량 경시적 자료이며, 반응 변수로는 학교 적응도, 학업 성취도, 휴대전화 의존도를 고려한다. 자기 상관 구조와 혁신 표준 편차 구조를 달리 가정하여 여러 모형을 비교한다. 가장 적합한 모형에 대해 학교 적응도와 학업 성취도에 대해 모든 설명 변수가 유의미하며, 휴대전화 의존도가 반응 변수일 때 사교육 시간을 제외한 모든 설명 변수가 유의미한 것으로 나타난다.

잠재변수 모형에서의 군집효율을 이용한 변수선택 (Variable selection for latent class analysis using clustering efficiency)

  • 김성경;서병태
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.721-732
    • /
    • 2018
  • 잠재집단 모형은 다변량 범주형 자료 안에 숨겨진 집단을 찾는 매우 중요한 도구종의 하나이다. 하지만 실제 자료분석에서 너무 많은 관찰변수들을 포함시킨 모형은 모형을 복잡하게 만들고 또한 모수추정의 정확도에 영향을 주기 때문에 정보가 손실되지 않는 내에서 유용한 변수를 찾는 것은 중요한 문제이다. Dean과 Raftery (2010)은 잠재집단 모형에서의 변수선택을 위해 BIC를 이용한 Headlong search 알고리즘을 제시하였는데 본 논문에서는 이 방법을 대체할 수 있는 방법으로 적합한 모형으로부터 계산된 잠재집단에 속할 사후확률을 이용하여 변수 선택을 하는 방법을 제안하고자 한다. 이를 위하여 잠재집단 모형의 적합성을 측정할 수 있는 새로운 통계량과 이를 이용한 변수선택 알고리즘을 제시할 것이다. 또한 제안된 방법의 효율성을 모의실험과 실증자료 분석을 통해 살펴보고자 한다.

Multiple Comparison for the One-Way ANOVA with the Power Prior

  • Bae, Re-Na;Kang, Yun-Hee;Hong, Min-Young;Kim, Seong-W.
    • Communications for Statistical Applications and Methods
    • /
    • 제15권1호
    • /
    • pp.13-26
    • /
    • 2008
  • Inference on the present data will be more reliable when the data arising from previous similar studies are available. The data arising from previous studies are referred as historical data. The power prior is defined by the likelihood function based on the historical data to the power $a_0$, where $0\;{\le}\;a_0\;{\le}\;1$. The power prior is a useful informative prior for Bayesian inference such as model selection and model comparison. We utilize the historical data to perform multiple comparison in the one-way ANOVA model. We demonstrate our results with some simulated datasets under a simple order restriction between the treatments.

정규 혼합분포를 이용한 준지도 학습 (Semi-Supervised Learning by Gaussian Mixtures)

  • 최병정;채윤석;최우영;박창이;구자용
    • 응용통계연구
    • /
    • 제21권5호
    • /
    • pp.825-833
    • /
    • 2008
  • 혼합모형을 이용한 판별분석은 다중 분류문제를 해결하는데 유용한 방법으로서 준지도 학습으로 확장될 수 있다. 본 논문에서는 정규 혼합분포를 이용한 준지도 학습 방법에서 혼합 모형의 하위 구성요소 개수 선택 기준을 연구하고자 한다. 하위 구성요소 선택 기준으로서 베이지안 정보량을 사용하였고 모의실험을 통해 이 방법의 유용성을 규명하였다.

NHPP에 기초한 소프트웨어 신뢰도 모형에 대한 베이지안 추론에 관한 연구 (The Bayesian Inference for Software Reliability Models Based on NHPP)

  • 이상식;김희철;송영재
    • 정보처리학회논문지D
    • /
    • 제9D권3호
    • /
    • pp.389-398
    • /
    • 2002
  • 본 논문에서는 비동질 포아송 과정에 기초한 소프트웨어 오류 현상에 대한 신뢰도 모형을 고려하고 사전정보를 이용한 베이지안 추론을 시행하였다. 고장 패턴은 NHPP에 대한 강도함수와 평균값 함수로서 나타낼 수 있다. 따라서 본 논문에서는 기존의 모형인 Goel이 제시한 모형과 신뢰성 분포로 많이 사용되는 와이블 분포의 특수형태인 레일리분포와 라플라스 분포를 이용한 모형을 제시하여 베이지안 추론을 시행하고 또, 효율적 모형을 위한 모형선택으로서 편차자승합을 이용하여 비교하였다. 모수의 추정을 위해서 마코브체인 몬테카를로 기법중에 하나인 깁스샘플링을 이용한 근사추정 기법이 사용되었다. 수치적인 예에서는 실측자료인 NTDS 자료를 이용하여 모수 및 신뢰도를 추정하였고 편차자승합을 이용한 모형비교의 결과를 나열하였다.

속성선택방법과 워드임베딩 및 BOW (Bag-of-Words)를 결합한 오피니언 마이닝 성과에 관한 연구 (Investigating Opinion Mining Performance by Combining Feature Selection Methods with Word Embedding and BOW (Bag-of-Words))

  • 어균선;이건창
    • 디지털융복합연구
    • /
    • 제17권2호
    • /
    • pp.163-170
    • /
    • 2019
  • 과거 10년은 웹의 발달로 인한 데이터가 폭발적으로 생성되었다. 데이터마이닝에서는 대용량의 데이터에서 무의미한 데이터를 구분하고 가치 있는 데이터를 추출하는 단계가 중요한 부분을 차지한다. 본 연구는 감성분석을 위한 재표현 방법과 속성선택 방법을 적용한 오피니언 마이닝 모델을 제안한다. 본 연구에서 사용한 재표현 방법은 백 오즈 워즈(Bag-of-words)와 Word embedding to vector(Word2vec)이다. 속성선택(Feature selection) 방법은 상관관계 기반 속성선택(Correlation based feature selection), 정보획득 속성선택(Information gain)을 사용했다. 본 연구에서 사용한 분류기는 로지스틱 회귀분석(Logistic regression), 인공신경망(Neural network), 나이브 베이지안 네트워크(naive Bayesian network), 랜덤포레스트(Random forest), 랜덤서브스페이스(Random subspace), 스태킹(Stacking)이다. 실증분석 결과, electronics, kitchen 데이터 셋에서는 백 오즈 워즈의 정보획득 속성선택의 로지스틱 회귀분석과 스태킹이 높은 성능을 나타냄을 확인했다. laptop, restaurant 데이터 셋은 Word2vec의 정보획득 속성선택을 적용한 랜덤포레스트가 가장 높은 성능을 나타내는 조합이라는 것을 확인했다. 다음과 같은 결과는 오피니언 마이닝 모델 구축에 있어서 모델의 성능을 향상시킬 수 있음을 나타낸다.

베이지안 네트워크와 행동 네트워크를 이용한 지능형 합성 캐릭터의 행동 생성 및 사용성 평가 (Usability Test and Behavior Generation of Intelligent Synthetic Character using Bayesian Networks and Behavior Networks)

  • 윤종원;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권10호
    • /
    • pp.776-780
    • /
    • 2009
  • 최근 스마트폰이 유비쿼터스 컴퓨팅 구현에 적합한 기기로 떠오르면서 스마트폰에서 동작하는 개인화된 지능형 서비스에 관한 연구가 활발히 진행되고 있다. 대표적인 것이 가상 캐릭터를 이용한 것이다. 본 논문에서는 외부 상황에 따른 에이전트의 자연스러운 행동 생성을 위해 베이지안 네트워크를 이용하여 사용자의 감정 상태와 바쁨 정도를 추론한 뒤 이와 함께 OCC모델을 이용한 에이전트 자체의 감정 상태, 그리고 스마트폰에서 수집된 디바이스 상태에 기반을 두어 행동 네트워크를 이용해 행동을 선택하는 방법을 제안한다. 또한 제안하는 방법의 유용성을 검증하기 위해 사용성 평가를 시행하였다.