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Bayesian Changepoints Detection for the Power Law
Process with Binary Segmentation Proceduresl)
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Abstract

We consider the power law process which is assumed to have multiple
changepoints. We propose a binary segmentation procedure for locating all existing
changepoints. We select one model between the no-changepoints model and the
single changepoint model by the Bayes factor. We repeat this procedure until no more
changepoints are found. Then we carry out a multiple test based on the Bayes factor
through the intrinsic priors of Berger and Pericchi (1996) to investigate the system
behaviour of failure times. We demonstrate our procedure with a real dataset and
some simulated datasets.

Keywords : Binary segmentation, Changepoint, Model selection, Intrinsic prior, Power law
process

1. Introduction

The counting process is often used in modeling a repairable system. There are several
different types of counting processes such as the homogeneous Poisson process (HPP), the
renewal process, and the nonhomogeneous Poisson process (NHPP). The HPP and the renewal
process are characterized by the times between failures. The failure times are independent and
identically distributed with an exponential distribution for the HPP and an arbitrary
distribution for the renewal process respectively. Upon failure it must be assumed that every
repair restores the system to the same condition as new one.

In the NHPP, the interarrival times are neither independent nor identically distributed.
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According to Ascher and Feingold (1984), among the class of NHPP models, the power law
process is the most commonly discussed in the literature. Duane (1964) analyzed data available
for several repairable systems (including complex hydro-mechanical devices, complex aircraft
generators, and a complete aircraft jet engine) in an effort to determine if any systematic
changes occurred during development of these systems. Duane’s analysis revealed that the
plots of the cumulative failure rate as a function of cumulative operating hours are
approximately linear on log-log paper. Crow (1974) expanded Duane’s results by formulating a
model for the reliability growth of repairable systems. The power law process (PLP) has the
following form of the mean value function,

m(t) =%tﬂ,n>0,ﬁ> 0.

Let Xy = (z),°+,%,) be the first n failure times of the PLP with 0<z;<---< 7, < T
We assume that there exist K unknown changepoints. Further, we assume that for each K+1
subdivision the data follow the PLP with the same scale parameter 77 and different shape
parameters §;,1=1,---, K+ 1. It is reasonable to assume the same scale parameter in each

subdivision since only the shape parameter determines the pattern of system failures. Our
primary interest is to detect existing changepoints. In Bayesian perspectives, the Bayes factor
is quite feasible as a model selection tool. However, computation could be a major factor due
to huge number of parameters. To circumvent this difficulty, we employ a binary
segmentation procedure, which are extensively used by several authors including Vostrikova
(1981), Chen and Gupta (1997), and Yang and Kuo (2001).

The procedure can be described as follows: first, we compare the models between no
changepoints and a single changepoint in (0, 7] using the Bayes factor. If one selects the
no-changepoints model, stop the procedure, and move on to the next interesting feature. That
is, we perform a multiple test about the shape parameter to see the behavior of failure times.

If not, then we estimate the changepoint denoted by ’;‘ Then we divide the data into two

parts: one is denoted by X(0 ER and the other contains all the event times between ';' and T

inclusive. We now run two Bayes factor tests similar to what we have done above; one is
based on X(0 P and the other is based on X(0 A Using data splitting in this procedure, we

continue testing until no more changepoints are found in all of further subdivisions. Again, we
perform multiple tests on the shape parameter in all subdivisions. In this procedure we only
need to compare the no-changepoints model with the single-changepoint model. Furthermore,
when we determine there is no single changepoint in a subsegment, we do not need to
continue testing for the data in that subsegment. This dwindle down the sample size down
quite significantly for locating changepoints in the remaining regions. The procedure is
efficient and quite easy to implement.

A considerable amount of literature has been found in changepoint problems. In the case of
Bayesian statistical analysis for a single changepoint in the Poisson process, there are some
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work such as Akman and Raftery (1986), Carlin, Gelfand, and Smith (1992), and Raftery
(1994). In particular, Akman and Raftery (1986) consider asymptotic inference for a
changepoint Poisson process when it cannot be assumed that the changepoint occurs at an
event time. Green (1995) proposes a reversible jump Markov chain Monte Carlo (MCMC)
algorithm for computation in estimating multiple changepoints.

This article is presented as follows. In Section 2, we introduce the single changepoint model
in the PLP and review the intrinsic Bayes factor and the intrinsic prior methodologies. In
Section 3, we compute the Bayes factor, estimate the changepoint, and derive a general set
of intrinsic priors. In Section 4, we present numerical results from real data and simulated
datasets. We finish this article with a brief discussion in Section 5.

2 . Preliminaries
2.1 The Changepoint Model of the NHPP

Consider a repairable system that is put into operation at time z=(). When the system has
failed, it will be replaced or restored. The repair time is assumed to be so short that it may
be neglected. A random variable of special interest is M{{#), the number of failures in the time

interval (Ojt]. The intensity function of a counting process { N(®, =0} is defined as
K= m () =-% ELND],

where m(t) denotes the mean number of failures in the interval (0,t], often called the mean

value function. The power law process has the following form of the intensity function,

u(t)=~§tﬂ“, 750, B0, 0. (1)

Consider two models, the no-changepoints model (M)) and the single changepoint model

( Ml). For the data Xeon of failure times, the intensity functions are given respectively by

My u(t)=§°— th, 04 T,
0
and

Bt o<z,
M:v(t) =1 g

where 7 is a changepoint.
2.2 The Intrinsic Bayes Factor and the Intrinsic Prior

Suppose that we wish to compare g models for the given data X,
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Mi: X~f,~(x|@,-),i=1,'",q.
Then the Bayes factor is defined as
nge) / S | eM(oj)do
B (z) = 3% @)
/ (o 1 6,)m (6,)d

s

where 7er (Gi) is the noninformative prior, ©, is the parameter space for 8; , and m{x) is the

marginal or predictive density of X under M, Now we can select the most plausible model
using the posterior probabilities

P(M I X) = [’_1%3 :|— =1,

where p(M) is called the prior probability that model A is true.

However, noninformative priors are often improper. This makes the Bayes factor in (2) not
to be well defined. Berger and Pericchi (1996) proposed the arithmetic intrinsic Bayes factor
(AIBF), which is given by

Bi(x)=B () - CFA /%), 3)

where the correction factor is CFA;; is

Here, z(l) is called the minimal training sample, in the sense that the marginal density is
finite for all possible models and L is the total number of training samples. In this setting,
the size of the minimal training sample is same as the number of unknown parameters.
Further, we notice that the ordinary Bayes factor requires proper priors such as conjugate
priors. However, this Bayes factor could not be robust in perspective of the change of
hyperparameters.

Note that the AIBF in (3) sometimes requires heavy computation. In particular, when the
number of parameters is large, computation of the IBF (AIBF) becomes a bit heavier.
However, if one can find a set of (hopefully) proper priors, one just needs to compute the
usual Bayes factor defined in (2). Berger and Pericchi (1996) suggest a ‘set of intrinsic priors
denoted by (ﬂ{, 71’2[) which is the solution of the following system of equations:

T3 (g (0 ) (6,) o
s @ Nal ey - 2 )
772 (92)771 (¢1 (92))

UP’ (92)'”1 (¢1 (92 ))

(5)
= B2* (62 );

where for i=12,
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B (6;,) = lim CFA under M,

n— oo

and for ¢ 5 j,
¢: (6;) = lim E}fj”’ (6;) under M,

with 9: being the MLE under M. We note that solutions are not necessarily unique nor

proper.
3. Main Results

3.1 No-changepoint vs. A Single Changepoint

The likelihood function under 4 is

n

Gy —1
flz | Mo, Bo) = (‘5‘2‘ ){H-Tz:l exp {" Tﬂo/’?o}- (6)

i=1

And the likelihood function under M is

i 6, — 1
flz | nuB,Bs) = (%)n B¢ [Hx] exp {~ 7 /n,}

i=1

n B — 1
A S

i=j+1

We note that the distribution of the likelihood ratio statistic cannot be obtained in analytic
form for small sample sizes. Furthermore, the MLE of 7 does not satisfy regularity conditions
required to apply standard asymptotic likelihood ratio theory. Thus, we use the Bayes factor
for comparing the no-change model (A4) with the single change model (A4).

Given the model M), we assume that 1y ~ Jnverse Gamma (§,v) and the prior density for

By is Do (ﬂo) = 2/(1 +,30)3- (How do you decide p, (,30) = 2/(1 +,30)3)
Then the marginal density of the full sample under 44 is
n 5o
L = {H’”W

i=1

:| o (TP 4p)n*e

FI(n+é
n
i=1

Given the model M|, we assume the prior distribution on 0,5, Bs,and 7 are' independent

with 1y ~ Iwerse I'(§,v),p, (B;) = 2/(1+5,)® for i=1,2,andr ~ (0, 7). Then the
marginal density of the full sample under 3 is

Do (ﬂo )dﬁo

my(z) =
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J n &3
crepr TR 112
/0 fo f ﬁiﬂ'z“"["“‘m Kx Py (8,)p1 (B,) - drdBidB,

where
K= (P+Th=P4u)e
The Bayes factor By for M against M is then By(x) = A/B, where

Il

I3
w foo ) 218121 [i:] 'i-| 1
A= y . dpB,dB,—=d
[o,zl)fo /o (1+4) (1+8)° K, By ﬁzT T
n—1
+J§=3lf

[zszjn)
f f
[z, T)

Tn, 0

=fe_ 20 . 2677 4 1
/o S A+ By +p)e &P

[n ‘[ﬂl

Hxi
[T et L g s Lar,
0 .

(1+8) (1+4) K

and
n ﬂO
[ g .
o (L+B)° (Th+v)+e™™
with

J 5 n 5,
qj=[H:zz} . |: H wi:| ,forj=1,--,n—1.
i=1

i=j+1

In this procedure, if the Bayes factor B, <1, we select the model M, and stop the
procedure. After that, we move on testing multiple hypotheses regarding the shape parameter

By in (6). Otherwise, we select the model M, we estimate 7 by using

c

r=E(r|X) = )

where
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n
Hxi

5,
= =[" 2 . 213; . ’1‘:1 —l
C— /;O)II)[; L (1+,81)3 (1+ﬂ2)3 K’l dﬂldﬂZTdT

© e 28 2877 g
32 /0 o (1+8) (1+4)° &, DT

7=1Yz,2;,,)

|'n —rl
].—.[-'L'i
[ iy e deder
[z, )9 Yo

1+6) @Q+45)° K

and

n

ﬂz
) H-’Ez_]

= [ 2 L 20 .|7i= '

/o(1+ﬁ1)3 T ALty

n—1 © foo 2[8] 2[3’1“.7' q:
+ f / - - L dBdydr
‘72:31 lzpze1)¥ 0 0 (1+181)3 (1+:32)3 Kvl IBI ﬂ2

1=

n 5
o oo 2/3;’ 9 [i:l i—‘
' . dp,dB,d
T [zm/o fo 1+6,)° (1+B)° K PrdBrdr.

Now we divide the data into two parts. Repeat the procedure until no further changepoint is
detected in all of the subdivisions. Note that the shape parameter ( in (1) determines the

behavior of failure times. In the next subsection, we extensively discuss the multiple test
about the shape parameter 0.

3.2 The Intrinsic Priors for the Power Law Model

For a repairable system, hypothesis testing about the shape parameter § in (1) plays an
important role in determining the times between system failures. When B =1, the intensity
function is a constant; ie. v(¢) = 1/, so that the power law process becomes a HPP. In this
case, the frequency of failures is time independent and the system is experiencing no change
over time. When 0<§<1, the frequency of failures is a decreasing function of time so that the
time between system failures increases and the system is improving over time. When (3>1,
the frequency of failures is a increasing function of time so that the time between system
failures decreases and the system is deteriorating over time. Thus, we consider the following
three hypotheses:

H:=1H:0<8<;H:>1 ®

The multiple test in (8) is extensively discussed by Lingham and Sivaganesan (1997) and
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Kim and Sun (2000). Obviously, hypotheses /5 and H; are more complex than ;. An
encompassing hypothesis Hy(0 < 3< o) should be used in order for the AIBF to be valid

(cf. Berger and Pericchi, 1996). From Berger and Pericchi (1996) the encompassing AIBF is
defined as

; .
ar_ By (z) CFA, ..
Bf}i - OjI(x) _Bji (.’L‘)( CFAJ-O );1 = %, = 37

where B]‘y (z) and CFA,, are given by (3) and (4) respectively. However, this AIBF requires

considerably heavy computation. Kim and Sun (2000) derived a general form of intrinsic priors
for testing hypotheses in (8). It is presented in the next theorem.

Theorem1 (Kim and Sun, 2000) Assume that Jeffreys’s prior are used as starting priors.
Then a set of intrinsic priors is

m(n) =g(n),0 <n < o,
ﬂé(n:ﬁ) :g(n)AQ(777/3)1{0<ﬁ<1,0<7;<00}; ©)
ﬂ'g(n;ﬂ) =9(77)A3 (n;ﬂ)l{ﬂ>0,0<n<oo};

where g{ - ) is proper on (0,0 ), and

Further, the normalizing constants of intrinsic priors ﬂ-{, and 7T§ are ¢, =0.72135 and
c3 = 3.47605, respectively.

Corollary 1 When g( -) is the probability density function of JInverse Gamma (§,v), the
set of intrinsic priors is

() = Ty e w0 <n < e,

m3(n,B) = Cz%-;glrlexp {~vm}- 5—11,0 <n< o 0<fB<1, (1)

wi(0,8) = eo ey e -/l GRG0 <1< 1 <h

where o and ¢ are normalizing constants in Theorem 1.

As a matter of fact, the priors used in subsection 3.1 are all intrinsic priors except for T
- We only need to derive a set of intrinsic priors for testing /4 against /. We do not present

all the derivation details to come up with equation (5). These can be computed using the
similar arguments in Appendix of Kim and Sun (2000). After taking limit, equation )
becomes
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m(n,B) - 14
1/(nB) - m (n)

= 4 (n,B). ' (12)

Theorem 2 For any proper g -) on ((), ),
w1 (n) =g(n),0 <n< o,
o (n,8) = g(m) D6 (n,8) 1< < 0,0< < b
is the solution of (12), where 4(7, 8)=1/(1+ B). Further, the normalizing constant of the

(13)

intrinsic prior #f is ¢=1/2.

Proof: The proof is easily followed from the identical arguments as the proof of Theorem

Remark 1 It is virtually impossible to find intrinsic priors for testing M against M in
Subsection 3.1. However, we need sort proper priors to avoid heavy (training sample)
computation for By, Because the shape parameter is not truncated in both models My and M,

a set of intrinsic priors in (13) could be used in a heuristic sense.

4. Numerical Results
4.1 Real Data Analysis

We analyzed the data of Jarrett (1979) on the time intervals between coal-mining disasters
recorded from March 15, 1851 to March 22, 1962. There were 191 accidents in this period of
40,550 days. This dataset has been extensively used by several authors including Raftery and
Akman (1986), Carlin et al (1992), Green (1995), and Yang and Kuo (2001). We fit the data

for the power law process with the Bayes factor B,,. We consider a relatively diffuse piror
for the scale parameter 7. That is, 7; ~ Jnverse Gamma (0.5,0.0000001). For the complete
data in (0, 40550], the Bayes factor B, is 1.072X10% and the estimated changepoint turned

out to be 14450 by (7), where it is located between the 124" accident and the 125" accident.
Next, we divide the complete data into two sub-divisions (0, 14450] and (14450, 40550]. After

calculating two Bayes factors, it appeared that no further changepoint is detected. That is, the
Bayes factor B, is 0.0632 in (0, 14450], whereas the Bayes factor B, is 05225 in (14450,

40550]. These results are quite similar to those of Yang and Kuo (2001), where they assume
that the intensity function is a step function. _

The next interesting feature is to see the behavior of failure times. In particular, we
conduct a multiple test for the hypotheses: H(B=1), H,(0<B<1),H;(B>1). We

compute the posterior probabilities with the set of intrinsic priors in (11) assuming equal prior
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model probabilities. Numerical results are reported in Table 1. It seems that the entire data
follow the homogeneous Poisson process’ with a single changepoint. We also note that the
MLEs of g for each sub-division are 0.9991 and 0.9935 respectively.

We use two more different hyperparameters in order to see if the values are stable. They
are (&v)=(0.01,0.01) and (0.1,0.1). The estimated changepoints are 14302 and 14315,
where they are found in the same location. Furthermore, the Bayes factors and the posterior
probabilities are quite close. Numerical values are reported in Table 2.

4.2 Simulation

We performed a simulation study. We generate datasets from the power law process with
the intensity function in (1). These data consist of the following two datasets for the fixed
scale parameter 77 =0.1. We generate a dataset with size of 20 for 3= (.3 and generate a
dataset with size of 20 for B=2. So the complete data is size of 40. Since the MLEs of
(n,B) are (0.0928,0.2866) and (0.1033,1.9988) respectively, it seems that the data are fairly well
generated. The time interval of complete data is (0,10.0936). In (0,10.0936], the Bayes factor
By, is 8.223X10 and the estimated changepoint is 8.8232, where it is located between the 20

1th

observation and the 2 observation. We divide the complete data into two segments (0,

8.8233] and (8.8233, 10.0936]. In (0, 8.8233], the Bayes factor B, is 0.9330. In (8.8233, 10.0936],
the Bayes factor B, is 0.3611. Now we move on to a multiple test to see the behavior of

time intervals. We compute the posterior probabilities assuming equal prior model probabilities.
Numerical values are reported in Table 3. The results are quite congruent with what we
would expect from the data. Figure 1 and Figure 2 show the intensity functions with
simulated datastes. As expected, the intensity functions are decreasing before the changepoint
and increasing after the changepoint.

We generate datasets assuming there are two changepoints. We fix the scale parameter
7= 1.0. The first dataset of size 20 is generated with 8= 1.0. The second dataset of size 25

is generated with 3= 0.5. The last dataset of size 20 is generated with 3= 2.0. So the
complete data is size of 65. The simulated data are plotted in Figure 3. The MLEs of (n,0)
for each dataset are (0.8945,1.0458), (1.0170,0.4818), and (1.0428,2.1601) respectively. The time
interval of complete data is (0, 845.116]. In (0, 845.116], the Bayes factor B,y is 6.190x10™
and the estimated changepoint ’Fz is 841.355. This is located between the 45 observation and
the 46™ observation. We divide the complete data into two segments (0, 841.355] and (841.355,
845.116]. In (0, 841.355], the Bayes factor B, is 4.499X 10* and the estimated changepoint 7:;
is 17.3755, which is located between the 22 observation and 23" observation. In Table 4 we

report three Bayes factors for each subdivision and corresponding posterior probabilities.
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Tablel. The posterior probabilities and Bayes factors; coal-mining disasters data.

(£,1)=(0.5,0.000000D| KHIX) P(H)|X) P(H{X) By
data before 7 0.8330 0.0672 0.0998 0.0623
data after 7 0.7745 0.1381 0.0844 0.5225

Table2. The posterior probabilities and Bayes factors; coal-mining disasters data.

(& 1)=(0.01,0.0D) P(H||X) P(H)X) A HX) By,
data before T 0.8331 0.0679 0.0990 0.0535
data after 7 0.7763 0.1400 0.0837 0.7635

By, for full data 5.971x103
(&1 =(0.1,0.1) P(H||X) P(Hy)X) P(HyX) By
data before 7 0.8343 0.0723 0.0934 0.0545
data after 7 0.7679 0.1546 0.0775 0.7024

By, for full data 4.431x10°3

Table3. The posterior probabilities and Bayes factors for the simulated data; a single

change—point.

(& 1)=(0.5,0.000000D)| A H|X) P(H)X) K HX) By,
data before 7 7.888x10 ~10 0.9999 1.800x10 ~1 0.9330
data after 7 0.0265 0.0016 0.9719 0.3611
By, for full data 8.9293x1010

Table4. The posterior probabilities and Bayes factors for the simulated data; two

change-points.

(£,1=(0.5,0.000000) | KH|X) P(H)X) A(HJX) By
data before 7 0.6335 0.0678 0.2987 0.6143

data between 7 & 7 0.4149 0.5460 0.0391 0.2597
data after 7 0.0015 0.0001 0.9984 0.2952
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. Bl
Figurel. Plot of intensity as data before changepoint.

Figure2. Plot of intensity as data after changepoint.

5. Discussion

We proposed a Bayesian approach for detecting multiple changepoints in the power law
process. In particular, we assume the changes in the shape parameter, which determines
system behavior of the process. At each comparison in the binary segmentation procedure, we
only need to compare a single changepoint model to a no-changepoint model. Thus, this
methodology circumvents computational difficulties occurred in unknown multi-dimensional
processes. We also conduct a multiple test based on the intrinsic priors. The computational
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results show that our procedure is quite feasible both for real data and simulated datasets.

—o— Failure Time
—— Interfailure Time

Figure 3. Plot of simulated data with two changepoints.
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