• Title/Summary/Keyword: Bayesian model

Search Result 1,312, Processing Time 0.039 seconds

Bayesian Model for Cost Estimation of Construction Projects

  • Kim, Sang-Yon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.1
    • /
    • pp.91-99
    • /
    • 2011
  • Bayesian network is a form of probabilistic graphical model. It incorporates human reasoning to deal with sparse data availability and to determine the probabilities of uncertain cases. In this research, bayesian network is adopted to model the problem of construction project cost. General information, time, cost, and material, the four main factors dominating the characteristic of construction costs, are incorporated into the model. This research presents verify a model that were conducted to illustrate the functionality and application of a decision support system for predicting the costs. The Markov Chain Monte Carlo (MCMC) method is applied to estimate parameter distributions. Furthermore, it is shown that not all the parameters are normally distributed. In addition, cost estimates based on the Gibbs output is performed. It can enhance the decision the decision-making process.

Bayesian Analysis of Software Reliability Growth Model with Negative Binomial Information (음이항분포 정보를 가진 베이지안 소프트웨어 신뢰도 성장모형에 관한 연구)

  • Kim, Hui-Cheol;Park, Jong-Gu;Lee, Byeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.852-861
    • /
    • 2000
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals betwewn software failures. In this paper, using priors for the number of fault with the negative binomial distribution nd the error rate with gamma distribution, Bayesian inference and model selection method for Jelinski-Moranda and Goel-Okumoto and Schick-Wolverton models in software reliability. For model selection, we explored the sum of the relative error, Braun statistic and median variation. In Bayesian computation process, we could avoid the multiple integration by the use of Gibbs sampling, which is a kind of Markov Chain Monte Carolo method to compute the posterior distribution. Using simulated data, Bayesian inference and model selection is studied.

  • PDF

Variational Bayesian inference for binary image restoration using Ising model

  • Jang, Moonsoo;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.27-40
    • /
    • 2022
  • In this paper, the focus on the removal noise in the binary image based on the variational Bayesian method with the Ising model. The observation and the latent variable are the degraded image and the original image, respectively. The posterior distribution is built using the Markov random field and the Ising model. Estimating the posterior distribution is the same as reconstructing a degraded image. MCMC and variational Bayesian inference are two methods for estimating the posterior distribution. However, for the sake of computing efficiency, we adapt the variational technique. When the image is restored, the iterative method is used to solve the recursive problem. Since there are three model parameters in this paper, restoration is implemented using the VECM algorithm to find appropriate parameters in the current state. Finally, the restoration results are shown which have maximum peak signal-to-noise ratio (PSNR) and evidence lower bound (ELBO).

Comparing Bayesian model selection with a frequentist approach using iterative method of smoothing residuals

  • Koo, Hanwool;Shafieloo, Arman;Keeley, Ryan E.;L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2021
  • We have developed a frequentist approach for model selection which determines consistency of a cosmological model and the data using the distribution of likelihoods from the iterative smoothing method. Using this approach, we have shown how confidently we can distinguish different models without comparison with one another. In this current work, we compare our approach with conventional Bayesian approach based on estimation of Bayesian evidence using nested sampling for the purpose of model selection. We use simulated future Roman (formerly WFIRST)-like type Ia supernovae data in our analysis. We discuss limits of the Bayesian approach for model selection and display how our proposed frequentist approach, if implemented appropriately, can perform better in falsification of individual models.

  • PDF

A Study on Bayesian p-values

  • Hwnag, Hyungtae;Oh, Heejung
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.725-732
    • /
    • 2002
  • P-values are often perceived as measurements of degree of compatibility between the current data and the hypothesized model. In this paper, a new concept of Bayesian p-values is proposed and studied under the non-informative prior distributions, which can be thought as the Bayesian counterparts of the classical p-values in the sense of using the concept of significance level. The performances of the proposed Bayesian p-values are compared with those of the classical p-values through several examples.

Bayesian Method in Forecasting of time Series (Bayesian 시계열 예측방법에 관한 소고)

  • 박일근
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.7 no.10
    • /
    • pp.47-51
    • /
    • 1984
  • In many forecasting problem, there is little or no useful historical information available at the time the initial forecast is required, The propose of this paper is study on Bayesian Method in forecasting. I : Introduction. II : Bayesian estimation. III : Constant Model. IV : General time series Models. V : Conclusion. The Bayesian procedure are then used to revise parameter estimates when time series information is available, in this paper we give a general description of the bayesian approach and demonstrate the methodology with several specific cases.

  • PDF

On the Bayesian Statistical Inference (베이지안 통계 추론)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.263-266
    • /
    • 2007
  • This paper discusses the Bayesian statistical inference. This paper discusses the Bayesian inference, MCMC (Markov Chain Monte Carlo) integration, MCMC method, Metropolis-Hastings algorithm, Gibbs sampling, Maximum likelihood estimation, Expectation Maximization algorithm, missing data processing, and BMA (Bayesian Model Averaging). The Bayesian statistical inference is used to process a large amount of data in the areas of biology, medicine, bioengineering, science and engineering, and general data analysis and processing, and provides the important method to draw the optimal inference result. Lastly, this paper discusses the method of principal component analysis. The PCA method is also used for data analysis and inference.

  • PDF

Bayesian model update for damage detection of a steel plate girder bridge

  • Xin Zhou;Feng-Liang Zhang;Yoshinao Goi;Chul-Woo Kim
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.29-43
    • /
    • 2023
  • This study investigates the possibility of damage detection of a real bridge by means of a modal parameter-based finite element (FE) model update. Field moving vehicle experiments were conducted on an actual steel plate girder bridge. In the damage experiment, cracks were applied to the bridge to simulate damage states. A fast Bayesian FFT method was employed to identify and quantify uncertainties of the modal parameters then these modal parameters were used in the Bayesian model update. Material properties and boundary conditions are taken as uncertainties and updated in the model update process. Observations showed that although some differences existed in the results obtained from different model classes, the discrepancy between modal parameters of the FE model and those experimentally obtained was reduced after the model update process, and the updated parameters in the numerical model were indeed affected by the damage. The importance of boundary conditions in the model updating process is also observed. The capability of the MCMC model update method for application to the actual bridge structure is assessed, and the limitation of FE model update in damage detection of bridges using only modal parameters is observed.

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

A new security model in p2p network based on Rough set and Bayesian learner

  • Wang, Hai-Sheng;Gui, Xiao-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2370-2387
    • /
    • 2012
  • A new security management model based on Rough set and Bayesian learner is proposed in the paper. The model focuses on finding out malicious nodes and getting them under control. The degree of dissatisfaction (DoD) is defined as the probability that a node belongs to the malicious node set. Based on transaction history records local DoD (LDoD) is calculated. And recommended DoD (RDoD) is calculated based on feedbacks on recommendations (FBRs). According to the DoD, nodes are classified and controlled. In order to improve computation accuracy and efficiency of the probability, we employ Rough set combined with Bayesian learner. For the reason that in some cases, the corresponding probability result can be determined according to only one or two attribute values, the Rough set module is used; And in other cases, the probability is computed by Bayesian learner. Compared with the existing trust model, the simulation results demonstrate that the model can obtain higher examination rate of malicious nodes and achieve the higher transaction success rate.