• Title/Summary/Keyword: Bayesian information

Search Result 1,230, Processing Time 0.026 seconds

Saliency Detection based on Global Color Distribution and Active Contour Analysis

  • Hu, Zhengping;Zhang, Zhenbin;Sun, Zhe;Zhao, Shuhuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5507-5528
    • /
    • 2016
  • In computer vision, salient object is important to extract the useful information of foreground. With active contour analysis acting as the core in this paper, we propose a bottom-up saliency detection algorithm combining with the Bayesian model and the global color distribution. Under the supports of active contour model, a more accurate foreground can be obtained as a foundation for the Bayesian model and the global color distribution. Furthermore, we establish a contour-based selection mechanism to optimize the global-color distribution, which is an effective revising approach for the Bayesian model as well. To obtain an excellent object contour, we firstly intensify the object region in the source gray-scale image by a seed-based method. The final saliency map can be detected after weighting the color distribution to the Bayesian saliency map, after both of the two components are available. The contribution of this paper is that, comparing the Harris-based convex hull algorithm, the active contour can extract a more accurate and non-convex foreground. Moreover, the global color distribution can solve the saliency-scattered drawback of Bayesian model, by the mutual complementation. According to the detected results, the final saliency maps generated with considering the global color distribution and active contour are much-improved.

Bayesian Testing for the Equality of Two Inverse Gaussian Populations with the Fractional Bayes Factor

  • Ko, Jeong-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.539-547
    • /
    • 2005
  • We propose the Bayesian testing for the equality of two independent Inverse Gaussian population means using the fractional Bayesian factors suggested by O' Hagan(1995). As prior distribution for the parameters, we assumed the noninformative priors. In order to investigate the usefulness of the proposed Bayesian testing procedures, the behaviors of the proposed results are examined via real data analysis.

  • PDF

Bayesian Multiple Comparison of Bivariate Exponential Populations based on Fractional Bayes Factor

  • Cho, Jang-Sik;Cho, Kil-Ho;Choi, Seung-Bae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.843-850
    • /
    • 2006
  • In this paper, we consider the Bayesian multiple comparisons problem for K bivariate exponential populations to make inferences on the relationships among the parameters based on observations. And we suggest the Bayesian procedure based on fractional Bayes factor when noninformative priors are applied for the parameters. Also, we give a numerical examples to illustrate our procedure.

  • PDF

The Use of Regularizers for High-Frequency Apodization in Filtered Backprojection (Filtered Backprojection에서 정착자를 사용한 고주파 감쇠)

  • Lee, Soo-Jin;Kim, Yong-Hoh
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.49-56
    • /
    • 1997
  • In emission computed tomography, statistical reconstruction methods in the context of a Bayesian framework have been a topic of interest over the last decade. This was mainly due to the fact that Bayesian approaches can incorporate a priori information into the reconstruction algorithm. Although these approaches can exhibit good performance, their applications to the clinic is hindered mainly by their high computational cost. On the other hand, the speed and simplicity of the filtered backprojection (FBP) algorithm have led to its widespread use in most clinical applications. In this work, we use spline models, which have been quite useful in Bayesian reconstruction, as regularizers for high-frequency apodization in FBP algorithm and show that the effects of using spline models as priors in Bayesian reconstruction can also be achieved in FBP reconstruction.

  • PDF

Texture segmentation using Neural Networks and multi-scale Bayesian image segmentation technique (신경회로망과 다중스케일 Bayesian 영상 분할 기법을 이용한 결 분할)

  • Kim Tae-Hyung;Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.39-48
    • /
    • 2005
  • This paper proposes novel texture segmentation method using Bayesian estimation method and neural networks. We use multi-scale wavelet coefficients and the context information of neighboring wavelets coefficients as the input of networks. The output of neural networks is modeled as a posterior probability. The context information is obtained by HMT(Hidden Markov Tree) model. This proposed segmentation method shows better performance than ML(Maximum Likelihood) segmentation using HMT model. And post-processed texture segmentation results as using multi-scale Bayesian image segmentation technique called HMTseg in each segmentation by HMT and the proposed method also show that the proposed method is superior to the method using HMT.

Bayesian methods in clinical trials with applications to medical devices

  • Campbell, Gregory
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.561-581
    • /
    • 2017
  • Bayesian statistics can play a key role in the design and analysis of clinical trials and this has been demonstrated for medical device trials. By 1995 Bayesian statistics had been well developed and the revolution in computing powers and Markov chain Monte Carlo development made calculation of posterior distributions within computational reach. The Food and Drug Administration (FDA) initiative of Bayesian statistics in medical device clinical trials, which began almost 20 years ago, is reviewed in detail along with some of the key decisions that were made along the way. Both Bayesian hierarchical modeling using data from previous studies and Bayesian adaptive designs, usually with a non-informative prior, are discussed. The leveraging of prior study data has been accomplished through Bayesian hierarchical modeling. An enormous advantage of Bayesian adaptive designs is achieved when it is accompanied by modeling of the primary endpoint to produce the predictive posterior distribution. Simulations are crucial to providing the operating characteristics of the Bayesian design, especially for a complex adaptive design. The 2010 FDA Bayesian guidance for medical device trials addressed both approaches as well as exchangeability, Type I error, and sample size. Treatment response adaptive randomization using the famous extracorporeal membrane oxygenation example is discussed. An interesting real example of a Bayesian analysis using a failed trial with an interesting subgroup as prior information is presented. The implications of the likelihood principle are considered. A recent exciting area using Bayesian hierarchical modeling has been the pediatric extrapolation using adult data in clinical trials. Historical control information from previous trials is an underused area that lends itself easily to Bayesian methods. The future including recent trends, decision theoretic trials, Bayesian benefit-risk, virtual patients, and the appalling lack of penetration of Bayesian clinical trials in the medical literature are discussed.

Bayesian pooling for contingency tables from small areas

  • Jo, Aejung;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1621-1629
    • /
    • 2016
  • This paper studies Bayesian pooling for analysis of categorical data from small areas. Many surveys consist of categorical data collected on a contingency table in each area. Statistical inference for small areas requires considerable care because the subpopulation sample sizes are usually very small. Typically we use the hierarchical Bayesian model for pooling subpopulation data. However, the customary hierarchical Bayesian models may specify more exchangeability than warranted. We, therefore, investigate the effects of pooling in hierarchical Bayesian modeling for the contingency table from small areas. In specific, this paper focuses on the methods of direct or indirect pooling of categorical data collected on a contingency table in each area through Dirichlet priors. We compare the pooling effects of hierarchical Bayesian models by fitting the simulated data. The analysis is carried out using Markov chain Monte Carlo methods.

Bayesian Statistical Modeling of System Energy Saving Effectiveness for MAC Protocols of Wireless Sensor Networks: The Case of Non-Informative Prior Knowledge

  • Kim, Myong-Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.890-900
    • /
    • 2010
  • The Bayesian networks methods provide an efficient tool for performing information fusion and decision making under conditions of uncertainty. This paper proposes Bayes estimators for the system effectiveness in energy saving of the wireless sensor networks by use of the Bayesian method under the non-informative prior knowledge about means of active and sleep times based on time frames of sensor nodes in a wireless sensor network. And then, we conduct a case study on some Bayesian estimation models for the system energy saving effectiveness of a wireless sensor network, and evaluate and compare the performance of proposed Bayesian estimates of the system effectiveness in energy saving of the wireless sensor network. In the case study, we have recognized that the proposed Bayesian system energy saving effectiveness estimators are excellent to adapt in evaluation of energy efficiency using non-informative prior knowledge from previous experience with robustness according to given values of parameters.

Weighted Bayesian Automatic Document Categorization Based on Association Word Knowledge Base by Apriori Algorithm (Apriori알고리즘에 의한 연관 단어 지식 베이스에 기반한 가중치가 부여된 베이지만 자동 문서 분류)

  • 고수정;이정현
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.171-181
    • /
    • 2001
  • The previous Bayesian document categorization method has problems that it requires a lot of time and effort in word clustering and it hardly reflects the semantic information between words. In this paper, we propose a weighted Bayesian document categorizing method based on association word knowledge base acquired by mining technique. The proposed method constructs weighted association word knowledge base using documents in training set. Then, classifier using Bayesian probability categorizes documents based on the constructed association word knowledge base. In order to evaluate performance of the proposed method, we compare our experimental results with those of weighted Bayesian document categorizing method using vocabulary dictionary by mutual information, weighted Bayesian document categorizing method, and simple Bayesian document categorizing method. The experimental result shows that weighted Bayesian categorizing method using association word knowledge base has improved performance 0.87% and 2.77% and 5.09% over weighted Bayesian categorizing method using vocabulary dictionary by mutual information and weighted Bayesian method and simple Bayesian method, respectively.

  • PDF

Vision based place recognition using Bayesian inference with feedback of image retrieval

  • Yi, Hu;Lee, Chang-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.19-22
    • /
    • 2006
  • In this paper we present a vision based place recognition method which uses Bayesian method with feed back of image retrieval. Both Bayesian method and image retrieval method are based on interest features that are invariant to many image transformations. The interest features are detected using Harris-Laplacian detector and then descriptors are generated from the image patches centered at the features' position in the same manner of SIFT. The Bayesian method contains two stages: learning and recognition. The image retrieval result is fed back to the Bayesian recognition to achieve robust and confidence. The experimental results show the effectiveness of our method.

  • PDF