본 논문에서는 잡음에 강인한 음성인식을 위해서 expectation-maximization (EM) 방식을 이용하여 잡음의 평균값을 추정하는 새로운 알고리듬을 제안하였다. 제안된 알고리듬에서는 온라인상의 인식용 음성이 직접 Bayesian 적응을 위해서 사용되며, 또한 훈련데이터를 이용하여 잡음의 평균값에 대한 사전 (prior) 분포를 알아낸 후 Bayesian 적응시에 이용한다. 잡음 음성의 모델링을 위해서는 PMC (parallel model combination) 방식을 이용하였고, 제안된 방식을 이용하여 자동차 잡음 환경 하에서 인식 실험을 수행한 결과, 기존의 PMC 방식에 비해서 향상된 인식성능을 보임을 알 수 있었다.
This study applied the Bayesian method for the quantification of the parameter uncertainty of spatial linear mixed model in the estimation of the spatial distribution of probability rainfall. In the application of Bayesian method, the prior sensitivity analysis was implemented by using the priors normally selected in the existing studies which applied the Bayesian method for the puppose of assessing the influence which the selection of the priors of model parameters had on posteriors. As a result, the posteriors of parameters were differently estimated which priors were selected, and then in the case of the prior combination, F-S-E, the sizes of uncertainty intervals were minimum and the modes, means and medians of the posteriors were similar to the estimates using the existing classical methods. From the comparitive analysis between Bayesian and plug-in spatial predictions, we could find that the uncertainty of plug-in prediction could be slightly underestimated than that of Bayesian prediction.
Communications for Statistical Applications and Methods
/
제13권3호
/
pp.701-718
/
2006
In cancer microarray experiments, the experimenter or patient which is nested in each experimenter often shows quite heterogeneous error variability, which should be estimated for identifying a source of variation. Our study describes a Bayesian method which utilizes clinical information for identifying a set of DE genes for the class of subtypes as well as assesses and examines the experimenter effect and patient effect which is nested in each experimenter as a source of variation. We propose a Bayesian multilevel mixed effect model based on analysis of covariance (ANACOVA). The Bayesian multilevel mixed effect model is a combination of the multilevel mixed effect model and the Bayesian hierarchical model, which provides a flexible way of defining a suitable correlation structure among genes.
A skill is defined as the special ability to do something well, especially as acquired by learning and practice. To learn a skill, a Bayesian network model for representing the skill is first learned. We will regard the Bayesian network for a skill as an affordance. We propose a soft Behavior Motivation(BM) switch as a method for ordering affordances to accomplish a task. Then, a skill is constructed as a combination of an affordance and a soft BM switch. To demonstrate the validity of our proposed method, some experiments were performed with GENIBO(Pet robot) performing a task using skills of Search-a-target-object, Approach-a-target-object, Push-up-in front of -a-target-object.
In many studies, considerable attention has been focussed upon choosing a model which represents underlying process of time series and forecasting the future. In the real world, however, there may be some cases that one model can not reflect all the characteristics of original time series. Under such circumstances, we may get better performance by combining the forecasts from several models. The most popular methods for combining forecasts involve taking a weighted average of multiple forecasts. But the weights are usually unstable. In cases the assumptions of normality and unbiasedness for forecast errors are satisfied, a Bayesian method can be used for updating the weights. In the real world, however, there are many circumstances the Bayesian method is not appropriate. This paper proposes a PNN(Probabilistic Neural Net) approach as a method for combining forecasts that can be applied when the assumption of normality or unbiasedness for forecast errors is not satisfied. In this paper, PNN method, which is similar to Bayesian approach, is suggested as an updating method of the unstable weights in the combination of the forecasts. The PNN method has been usually used in the field of pattern recognition. Unlike the Bayesian approach, it requires no assumption of a specific prior distribution because it gets probabilities by using the distribution estimated from given data. Empirical results reveal that the PNN method offers superior predictive capabilities.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.394-399
/
2002
In this paper, Multisource data classification methods based on Bayesian formula are considered. For this decision fusion scheme, the individual data sources are handled separately by statistical classification algorithms and then Bayesian fusion method is applied to integrate from the available data sources. This method includes the combination of each expert decisions where the weights of the individual experts represent the reliability of the sources. The reliability measure used in the statistical approach is common to all pixels in previous work. In this experiment, the weight factors have been assigned to have different value for all pixels in order to improve the integrated classification accuracies. Although most implementations of Bayesian classification approaches assume fixed a priori probabilities, we have used adaptive a priori probabilities by iteratively calculating the local a priori probabilities so as to maximize the posteriori probabilities. The effectiveness of the proposed method is at first demonstrated on simulations with artificial and evaluated in terms of real-world data sets. As a result, we have shown that Bayesian statistical fusion scheme performs well on multispectral data classification.
Kim, Do-Wan;Park, Jin-Bae;Lee, Yeon-Woo;Joo, Young-Hoon
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
/
pp.182-185
/
2003
This paper presents a new design algorithm for the combination with the fuzzy classifier and the Bayesian classifier. Only few attempts have so far been made at providing an effective design algorithm combining the advantages and removing the disadvantages of two classifiers. Specifically, the suggested algorithms are composed of three steps: the combining, the fuzzy-set-based pruning, and the fuzzy set tuning. In the combining, the multi-inputs and multi-outputs (MIMO) fuzzy model is used to combine two classifiers. In the fuzzy-set-based pruning, to effectively decrease the complexity of the fuzzy-Bayesian classifier and the risk of the overfitting, the analysis method of the fuzzy set and the recursive pruning method are proposesd. In the fuzzy set tuning for the misclassified feature vectors, the premise parameters are adjusted by using the gradient decent algorithm. Finally, to show the feasibility and the validity of the proposed algorithm, a computer simulation is provided.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제3권2호
/
pp.99-106
/
1999
In this paper, the spline hazard rate model to the randomly censored data is introduced. The unknown hazard rate function is expressed as a linear combination of B-splines which is constrained to be linear(or constant) in tails. We determine the coefficients of the linear combination by maximizing the likelihood function. The number of knots are determined by Bayesian Information Criterion. Examples using simulated data are used to illustrate the performance of this method under presenting the random censoring.
Fan, B.;Chen, Y.Z.;Moran, C.;Zhao, S.H;Liu, B.;Yu, M.;Zhu, M.J.;Xiong, T.A.;Li, K.
Asian-Australasian Journal of Animal Sciences
/
제18권11호
/
pp.1529-1534
/
2005
Individual-breed assignments were implemented in six swine populations using twenty six microsatellites recommended by the Food and Agriculture Organization and the International Society for Animal Genetics (FAO-ISAG). Most microsatellites exhibited high polymorphisms as shown by the number of alleles and the polymorphism information content. The assignment accuracy per locus obtained by using the Bayesian method ranged from 33.33% (CGA) to 68.47% (S0068), and the accumulated assignment accuracy of the top ten loci combination added up to 96.40%. The assignment power of microsatellites based on the Bayesian method had positive correlations with the number of alleles and the gene differential coefficient ($G_{st}$) per locus, while it has no relationship to genetic heterozygosity, polymorphism information content per locus and the exclusion probabilities under case II and case III. The percentage of corrected assignment was highest for the Bayesian method, followed by the gene frequency and distancebased methods. The assignment efficiency of microsatellites rose with increase in the number of loci used, and it can reach 98% when using a ten-locus combination. This indicated that such a set of ten microsatellites is sufficient for breed verification purposes.
A nonparametric Bayesian multiple comparisons problem (MCP) for dependence parameters in I bivariate exponential populations is studied here. A simple method for pairwise comparisons of these parameters is also suggested. Here we extend the methodology studied by Gopalan and Berry (1998) using Dirichlet process priors. The family of Dirichlet process priors is applied in the form of baseline prior and likelihood combination to provide the comparisons. Computation of the posterior probabilities of all possible hypotheses are carried out through Markov Chain Monte Carlo method, namely, Gibbs sampling, due to the intractability of analytic evaluation. The whole process of MCP for the dependent parameters of bivariate exponential populations is illustrated through a numerical example.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.