Browse > Article
http://dx.doi.org/10.5713/ajas.2005.1529

Individual-breed Assignment Analysis in Swine Populations by Using Microsatellite Markers  

Fan, B. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University)
Chen, Y.Z. (Centre for Advanced Technologies in Animal Genetics and Reproduction (Reprogen) Faculty of Veterinary Science, University of Sydney)
Moran, C. (Centre for Advanced Technologies in Animal Genetics and Reproduction (Reprogen) Faculty of Veterinary Science, University of Sydney)
Zhao, S.H (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University)
Liu, B. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University)
Yu, M. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University)
Zhu, M.J. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University)
Xiong, T.A. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University)
Li, K. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.18, no.11, 2005 , pp. 1529-1534 More about this Journal
Abstract
Individual-breed assignments were implemented in six swine populations using twenty six microsatellites recommended by the Food and Agriculture Organization and the International Society for Animal Genetics (FAO-ISAG). Most microsatellites exhibited high polymorphisms as shown by the number of alleles and the polymorphism information content. The assignment accuracy per locus obtained by using the Bayesian method ranged from 33.33% (CGA) to 68.47% (S0068), and the accumulated assignment accuracy of the top ten loci combination added up to 96.40%. The assignment power of microsatellites based on the Bayesian method had positive correlations with the number of alleles and the gene differential coefficient ($G_{st}$) per locus, while it has no relationship to genetic heterozygosity, polymorphism information content per locus and the exclusion probabilities under case II and case III. The percentage of corrected assignment was highest for the Bayesian method, followed by the gene frequency and distancebased methods. The assignment efficiency of microsatellites rose with increase in the number of loci used, and it can reach 98% when using a ten-locus combination. This indicated that such a set of ten microsatellites is sufficient for breed verification purposes.
Keywords
Individual-breed Assignment; Assignment Accuracy; Microsatellite; Pig;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Barker, J. S. F. 1994. A global protocol for determining genetic distance among domestic livestock breeds. Proc. 5th World Congr.Genet.Appl.Livest.Prod. 21:501-508.
2 Blouin, M. S., M. Parsons, V. Lacaille and S. Lotz. 1996. Use of microsatellite loci to classify individuals by relatedness. Molecular Ecology 5:393-401.
3 Usha, A. P., S. P. Simpson and J. L. Willians. 1995. Probability of random sire exclusion using microsatellite markers for parentage verification. Anim. Genet. 26:12-18.
4 Wang, X., H. H. Cao, S. M. Geng and H. B. Li. 2004. Genetic diversity of 10 indigenous pig breeds in China by using microsatellites. Asian-Aust. J. Anim. Sci. 17:1219-1222.
5 Botstein, D., R. L. White, M. Skolnick and R. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
6 Zhang, J. H., Y. Z. Xiong and C. Y. Deng. 2005. Correlations of genic heterozygosity and variances with heterosis in a pig populations revealed by microsatellites DNA marker. Asian-Aust. J. Anim. Sci. 18:620-625.
7 Momments, G., A. van Zeveren and F. J. Peelman. 1998. Effectiveness of bovine microsatellites in resolving paternity cases in American bison, Bison bison L. Anim. Genet. 29:12-18.
8 Cornuet, J. M., S. Piry, G. Luikart, A. Estoup and M. Solignac. 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genet. 153:1989-2000.
9 Gongora, J., Y. Chen, J. E. Bernal, F. W. Nicholas and C. Moran. 2002. Interspecific amplification of peccary microsatellite markers using porcine primers. Anim. Genet. 33:312-314.
10 Peischl, T., A. W. Kuss, E. Melchinger-Wild and H. Geldermann. 2005. Nine porcine microsatellite loci tested for size homoplasy in genetically diverse breeds. Anim. Genet. 36:244-247.
11 Blott, S. C., J. L. Williams and C. S. Haley. 1999. Discriminating among cattle breeds using genetic markers. Heredity 82:613-619.
12 Jamieson, A. and C. S. Taylor. 1997. Comparisons of three probability formulae for parentage testing. Anim. Genet. 28:397-400.
13 Marklund, S., H. Ellegren, S. Eriksson, K. Sandberg and L. Andersson. 1994. Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellies. Anim. Genet. 25:19-23.
14 Heyen, D. W., J. E. Beever, D. Yang, R. E. Evert, C. Green, S. R. E. Bates and J. S. Ziegle. 1997. Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexes for semi-automated parentage testing. Anim. Genet. 28:21-27.
15 Bjornstad, G. and K. H. Roed. 2001. Breed demarcation and potential for breed allocation of horse assessed by microsatellite markers. Anim. Genet. 32:59-65.
16 Luikart, G., M. P. Biju-Duval, O. Ertugrul, Y. Zagdsuren, C. Maudet and P. Taberlet. 1999. Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats. Anim. Genet. 30:431-438.
17 Nechtelberger, D., C. Kaltwasser, I. Stur, J. N. Meyer, G. Brem, M. Mueller and S. Müller. 2001. DNA microsatellite analysis for parentage control in Austrian pigs. Anim. Biotechnol. 12:141-144.
18 Gotz, K. and G. Thaller. 1998. Assignment of individuals to populations using microsatellites. J. Anim. Breed. Genet. 115:53-61.
19 Raymond, M., Rousset, F. GENEPOP. Version 1.2. Population genetics software for exact tests and ecumenisism. J. Hered. 1995, 86:248-249.
20 Yong, D. H., H. S.Kong, J. D. Oh, J. H. Lee, B. W. Cho, J. D. Kim, K. J. Jeon, C. Y. Jo, G. J. Jeon and H. K. Lee. 2005. Establishment of an individual identification system based on microsatellite polymorphism in Korean cattle (Henwoo). Asian-Aust. J. Anim. Sci. 18:762-766.
21 Li, C. C., Z. G. Wang, B. Liu, S. L. Yang, Z. M. Zhu, B. Fan, M. Yu, S. H. Zhao and K. Li. 2004. Evaluation of the Genetic relationship among ten Chinese indigenous pig breeds with twenty-six microsatellite markers. Asian-Aust. J. Anim. Sci. 17:441-444.
22 Guelph.Ontario, Canada. Behl, R., N. J. Sherora, J. Behl, M. S. Tantia and R. K. Vijh. 2002. Microsatellite Sequences of Mammals and Their Applications in Genome Analysis in Pigs-A Review. Asian-Aust .J. Anim. Sci. 15(12):1822-1830.
23 Li, K., Y. Chen, C. Moran, B. Fan, S. Zhao and Z. Peng. 2000. Analysis of diversity and genetic relationships between four Chinese indigenous pig breeds and one Australian commercial pig breed. Anim. Genet. 31:322-325.
24 Ota, T. 1993. DISPAN: Genetic Distance and Phylogenetic Analysis. Pennsylvania State University. University Park.
25 Dawson, K. J. and K. Belkhir. 2001. A Bayesian procedure to the identification of panmictic populations and the assignment of individuals. Genet. Res. Camb. 78:59-77.
26 Marshall, T. C., J. Slate, L. Kruuk and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7:639-655.
27 Rannala, B. and J. L. Mountain. 1997. Detecting immigration by using multilocus genotype. Proc. Natl. Acad. Sci. USA 94:9197-9201.
28 Villanueva, B., E. Verspoor and P. M. Visscher. 2002. Parental assignment in fish using microsatellite genetic marker with finite numbers of parents and offspring. Anim. Genet. 33:33-41.
29 Toskinen, M. T. and P. Bredbadka. 1999. A convenient and efficient microsatellite-based assay for resolving parentage in dogs. Anim. Genet. 30:148-149.