• Title/Summary/Keyword: Bayesian Reasoning

Search Result 42, Processing Time 0.036 seconds

Context Aware System based on Bayesian Network driven Context Reasoning and Ontology Context Modeling

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.254-259
    • /
    • 2008
  • Uncertainty of result of context awareness always exists in any context-awareness computing. This falling-off in accuracy of context awareness result is mostly caused by the imperfectness and incompleteness of sensed data, because of this reasons, we must improve the accuracy of context awareness. In this article, we propose a novel approach to model the uncertain context by using ontology and context reasoning method based on Bayesian Network. Our context aware processing is divided into two parts; context modeling and context reasoning. The context modeling is based on ontology for facilitating knowledge reuse and sharing. The ontology facilitates the share and reuse of information over similar domains of not only the logical knowledge but also the uncertain knowledge. Also the ontology can be used to structure learning for Bayesian network. The context reasoning is based on Bayesian Networks for probabilistic inference to solve the uncertain reasoning in context-aware processing problem in a flexible and adaptive situation.

Development of Influence Diagram Based Knowledge Base in Probabilistic Reasoning (인플루언스 다이아그램을 기초로 한 이상진단 지식베이스의 개발)

  • 김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3124-3134
    • /
    • 1993
  • Diagnosis is composed of two different but interrelated steps ; retrieving the sensory responses f the system and reasoning the state of the system through the given sensor data. This paper explains the probabilistic nature of reasoning involved in the diagnosis when the uncertainties are inevitably included in experts' diagnostic decision making. Uncertainties in decision making are experts' personal experiences, preferences, and system's coherent characteristics. In order to ensure a consistent decision based on the same responses from the system, expert system technology is adopted with the Bayesian reasoning scheme.

A Target Position Reasoning System for Disaster Response Robot based on Bayesian Network (베이지안 네트워크 기반 재난 대응 로봇의 탐색 목표 추론 시스템)

  • Yang, Kyon-Mo;Seo, Kap-Ho;Lee, Jongil;Lee, Seokjae;Suh, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • In this paper, we introduce a target position reasoning system based on Bayesian network that selects destinations of robots on a map to explore compound disaster environments. Compound disaster accidents have hazardous conditions because of a low visibility and a high temperature. Before firefighters enter the environment, the robots notify information in advance, such as victim's positions, number of victims, and status of debris of building. The problem of the previous system is that the system requires a target position to operate the robots and the firefighter need to learn how to use the robot. However, selecting the target position is not easy because of the information gap between eyewitness accounts and map coordinates. In addition, learning the technique how to use the robots needs a lot of time and money. The proposed system infers the target area using Bayesian network and selects proper x, y coordinates on the map based on image processing methods of the map. To verify the proposed system, we designed three example scenarios based on eyewetinees testimonies and compared time consumption between human and the system. In addition, we evaluate the system usability by 40 subjects.

Application of Conjugate Distribution using Deductive and Inductive Reasoning in Quality and Reliability Tools (품질 및 신뢰성 기법에서 연역 및 귀납 추론에 의한 Conjugate 분포의 적용)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.27-33
    • /
    • 2010
  • The paper proposes the guidelines of application and interpretation for quality and reliability methodologies using deductive or inductive reasoning. The research also reviews Bayesian quality and reliability tools by deductive prior function and inductive posterior function.

  • PDF

Landslide Susceptibility Analysis Using Bayesian Network and Semantic Technology (시맨틱 기술과 베이시안 네트워크를 이용한 산사태 취약성 분석)

  • Lee, Sang-Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.61-69
    • /
    • 2010
  • The collapse of a slope or cut embankment brings much damage to life and property. Accordingly, it is very important to analyze the spatial distribution by calculating the landslide susceptibility in the estimation of the risk of landslide occurrence. The heuristic, statistic, deterministic, and probabilistic methods have been introduced to make landslide susceptibility maps. In many cases, however, the reliability is low due to insufficient field data, and the qualitative experience and knowledge of experts could not be combined with the quantitative mechanical?analysis model in the existing methods. In this paper, new modeling method for a probabilistic landslide susceptibility analysis combined Bayesian Network with ontology model about experts' knowledge and spatial data was proposed. The ontology model, which was made using the reasoning engine, was automatically converted into the Bayesian Network structure. Through conditional probabilistic reasoning using the created Bayesian Network, landslide susceptibility with uncertainty was analyzed, and the results were described in maps, using GIS. The developed Bayesian Network was then applied to the test-site to verify its effect, and the result corresponded to the landslide traces boundary at 86.5% accuracy. We expect that general users will be able to make a landslide susceptibility analysis over a wide area without experts' help.

Fuzzy Cognitive Map and Bayesian Belief Network for Causal Knowledge Engineering: A Comparative Study (인과관계 지식 모델링을 위한 퍼지인식도와 베이지안 신뢰 네트워크의 비교 연구)

  • Cheah, Wooi-Ping;Kim, Kyoung-Yun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Jeong-Sik
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.147-158
    • /
    • 2008
  • Fuzzy Cognitive Map (FCM) and Bayesian Belief Network (BBN) are two major frameworks for modeling, representing and reasoning about causal knowledge. Despite their extensive use in causal knowledge engineering, there is no reported work which compares their respective roles. This paper aims to fill the gap by providing a qualitative comparison of the two frameworks through a systematic analysis based on some inherent features of the frameworks. We proposed a set of comparison criteria which covers the entire process of causal knowledge engineering, including modeling, representation, and reasoning. These criteria are usability, expressiveness, reasoning capability, formality, and soundness. The results of comparison have revealed some important facts about the characteristics of FCM and BBN, which will help to determine how FCM and BBN should be used, with respect to each other, in causal knowledge engineering.

A Discrete Time Approximation Method using Bayesian Inference of Parameters of Weibull Distribution and Acceleration Parameters with Time-Varying Stresses (시변환 스트레스 조건에서의 와이블 분포의 모수 및 가속 모수에 대한 베이시안 추정을 사용하는 이산 시간 접근 방법)

  • Chung, In-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1331-1336
    • /
    • 2008
  • This paper suggests a method using Bayesian inference to estimate the parameters of Weibull distribution and acceleration parameters under the condition that the stresses are time-dependent functions. A Bayesian model based on the discrete time approximation is formulated to infer the parameters of interest from the failure data of the virtual tests and a statistical analysis is considered to decide the most probable mean values of the parameters for reasoning of the failure data.

  • PDF

A Probabilistic Reasoning in Incomplete Knowledge for Theorem Proving (불완전한 지식에서 정리증명을 위한 확률추론)

  • Kim, Jin-Sang;Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • We present a probabilistic reasoning method for inferring knowledge about mathematical truth before an automated theorem prover completes a proof. We use a Bayesian analysis to update beleif in truth, given theorem-proving progress, and show how decision-theoretic methods can be used to determine the value of continuing to deliberate versus taking immediate action in time-critical situations.

  • PDF

Causal reasoning studies with a focus on the Power Probabilistic Contrast Theory (힘 확률 대비 이론에 기반을 둔 인과 추론 연구)

  • Park, Jooyong
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.4
    • /
    • pp.541-572
    • /
    • 2016
  • Causal reasoning is actively studied not only by psychologists but, in recent years, also by cognitive scientists taking the Bayesian approach. This paper seeks to provide an overview of the recent trends in causal reasoning research with a focus on the power probabilistic contrast theory of causality, a major psychological theory on causal inference. The power probabilistic contrast theory (PPCT) assumes that a cause is a power that initiates or inhibits the result. This power is purported be understood through statistical correlation under certain conditions. The paper examines the supporting empirical evidence in the development of PPCT. Also, introduced are the theoretical dispute between the PPCT and the model based on Bayesian approach, and the current developments and implications of research on causal invariance hypothesis, which states that cause operates identically regardless of the context. Recent studies have produced experimental results that cannot be readily explained by existing empirical approach. Therefore, these results call for serious examination of the power theory of causality by researchers in neighboring fields such as philosophy, statistics, and artificial intelligence.

Context-based Service Reasoning Model Based on User Environment Information (사용자환경정보 기반 Context-based Service 추론모델)

  • Ko, Kwang-Eun;Jang, In-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.907-912
    • /
    • 2007
  • The present level of ubiquitous computing technology have developed to the point where Home-server provides services that user require directly for user in the intelligent space. But it will need intelligent system to provides more active services for user in the near future. In this paper, we define the environment information about situation that user is in as Context, and collect the Context that stereotype as 4W1H form for construct the system that can decision service will be provide from information about a situation that user is in, without user's involvement. Additionally we collect information about user's emotional state, use these informations as nodes of Bayesian network for probabilistic reasoning. From that, we materialize Context Awareness system about it that what kind of situation user is in. And, we propose the Context-based Service reasoning model using Bayesian Network from the result of Context Awareness.