• Title/Summary/Keyword: Bayesian Prediction

Search Result 304, Processing Time 0.025 seconds

Bayesian Learning for Self Organizing Maps (자기조직화 지도를 위한 베이지안 학습)

  • 전성해;전홍석;황진수
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.251-267
    • /
    • 2002
  • Self Organizing Maps(SOM) by Kohonen is very fast algorithm in neural networks. But it doesn't show sure rules of training results. In this paper, we introduce to Bayesian Learning for Self Organizing Maps(BLSOM) which combines self organizing maps with Bayesian learning. So it supports explanatory power of models and improves prediction. BLSOM has global optima anywhere but SOM has not. This is proved by experiment in this paper.

A study on the Bayesian nonparametric model for predicting group health claims

  • Muna Mauliza;Jimin Hong
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.323-336
    • /
    • 2024
  • The accurate forecasting of insurance claims is a critical component for insurers' risk management decisions. Hierarchical Bayesian parametric (BP) models can be used for health insurance claims forecasting, but they are unsatisfactory to describe the claims distribution. Therefore, Bayesian nonparametric (BNP) models can be a more suitable alternative to deal with the complex characteristics of the health insurance claims distribution, including heavy tails, skewness, and multimodality. In this study, we apply both a BP model and a BNP model to predict group health claims using simulated and real-world data for a private life insurer in Indonesia. The findings show that the BNP model outperforms the BP model in terms of claims prediction accuracy. Furthermore, our analysis highlights the flexibility and robustness of BNP models in handling diverse data structures in health insurance claims.

Overview of the 217PlusTM, Electronic System Reliability Prediction Methodology (전기전자 시스템 신뢰성 예측 방법론 217PlusTM의 개요)

  • Jeon, Tae-Bo
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.215-226
    • /
    • 2008
  • MIL-HDBK-217 has widely been used for electronics reliability predictions. Recently, the $217Plus^{TM}$ has been developed by DoD RIAC and may replace MIL-HDBK-217. A overview of the $217Plus^{TM}$ has been performed in this paper. We first reviewed the overall concepts and reliability prediction procedures. We then explained the component models and the system level model with process grading concepts. Bayesian approach incorporating field data into the predicted failure rate is another feature of this methodology.

  • PDF

Prediction of Calf Diseases using Ontology and Bayesian Network (온톨로지와 베이지안 네트워크를 활용한 송아지 질병 예측)

  • Kang, Yun-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1898-1908
    • /
    • 2017
  • Accurately Diagnosing and managing disease in livestock can help sustainable livestock productivity and maintain human health. Maintaining the health of livestock is an important part of human health. The prediction of calf diseases is carried out by pre-processing the calf biometric data. calf information is used as information for calf birth history, calf biometric information, environmental information on housing, and disease management. It can be developed as an ontology and used as a knowledge base. The Bayesian network was used and inferred in the process of analyzing the correlations of calf diseases. Prediction of diseases based on knowledge of calf disease on calf diseases name, causes, occur timing, care and symptoms, etc., will be able to respond to accurate disease treatment and prevent other livestock from being infected in advance.

Development of a Stochastic Snow Depth Prediction Model Using a Bayesian Deep Learning Method (베이지안 딥러닝 기법을 이용한 확률적 적설심 예측 모델 개발)

  • Jeong, Youngjoon;Lee, Sang-ik;Lee, Jonghyuk;Seo, Byunghun;Kim, Dongsu;Seo, Yejin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.35-41
    • /
    • 2022
  • Heavy snow damage can be prevented in advance with an appropriate security system. To develop the security system, we developed a model that predicts snow depth after a few hours when the snow depth is observed, and utilized it to calculate a failure probability with various types of greenhouses and observed snow depth data. We compared the Markov chain model and Bayesian long short-term memory models with varying input data. Markov chain model showed the worst performance, and the models that used only past snow depth data outperformed the models that used other weather data with snow depth (temperature, humidity, wind speed). Also, the models that utilized 1-hour past data outperformed the models that utilized 3-hour data and 6-hour data. Finally, the Bayesian LSTM model that uses 1-hour snow depth data was selected to predict snow depth. We compared the selected model and the shifting method, which uses present data as future data without prediction, and the model outperformed the shifting method when predicting data after 11-24 hours.

DIAGNOSING CARDIOVASCULAR DISEASE FROM HRV DATA USING FP-BASED BAYESIAN CLASSIFIER

  • Lee, Heon-Gyu;Lee, Bum-Ju;Noh, Ki-Yong;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.868-871
    • /
    • 2006
  • Mortality of domestic people from cardiovascular disease ranked second, which followed that of from cancer last year. Therefore, it is very important and urgent to enhance the reliability of medical examination and treatment for cardiovascular disease. Heart Rate Variability (HRV) is the most commonly used noninvasive methods to evaluate autonomic regulation of heart rate and conditions of a human heart. In this paper, our aim is to extract a quantitative measure for HRV to enhance the reliability of medical examination for cardiovascular disease, and then develop a prediction method for extracting multi-parametric features by analyzing HRV from ECG. In this study, we propose a hybrid Bayesian classifier called FP-based Bayesian. The proposed classifier use frequent patterns for building Bayesian model. Since the volume of patterns produced can be large, we offer a rule cohesion measure that allows a strong push of pruning patterns in the pattern-generating process. We conduct an experiment for the FP-based Bayesian classifier, which utilizes multiple rules and pruning, and biased confidence (or cohesion measure) and dataset consisting of 670 participants distributed into two groups, namely normal and patients with coronary artery disease.

  • PDF

Reliability analysis for fatigue damage of railway welded bogies using Bayesian update based inspection

  • Zuo, Fang-Jun;Li, Yan-Feng;Huang, Hong-Zhong
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • From the viewpoint of engineering applications, the prediction of the failure of bogies plays an important role in preventing the occurrence of fatigue. Fatigue is a complex phenomenon affected by many uncertainties (such as load, environment, geometrical and material properties, and so on). The key to predict fatigue damage accurately is how to quantify these uncertainties. A Bayesian model is used to account for the uncertainty of various sources when predicting fatigue damage of structural components. In spite of improvements in the design of fatigue-sensitive structures, periodic non-destructive inspections are required for components. With the help of modern nondestructive inspection techniques, the fatigue flaws can be detected for bogie structures, and fatigue reliability can be updated by using Bayesian theorem with inspection data. A practical fatigue analysis of welded bogies is utilized to testify the effectiveness of the proposed methods.

A Robust Bayesian Probabilistic Matrix Factorization Model for Collaborative Filtering Recommender Systems Based on User Anomaly Rating Behavior Detection

  • Yu, Hongtao;Sun, Lijun;Zhang, Fuzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4684-4705
    • /
    • 2019
  • Collaborative filtering recommender systems are vulnerable to shilling attacks in which malicious users may inject biased profiles to promote or demote a particular item being recommended. To tackle this problem, many robust collaborative recommendation methods have been presented. Unfortunately, the robustness of most methods is improved at the expense of prediction accuracy. In this paper, we construct a robust Bayesian probabilistic matrix factorization model for collaborative filtering recommender systems by incorporating the detection of user anomaly rating behaviors. We first detect the anomaly rating behaviors of users by the modified K-means algorithm and target item identification method to generate an indicator matrix of attack users. Then we incorporate the indicator matrix of attack users to construct a robust Bayesian probabilistic matrix factorization model and based on which a robust collaborative recommendation algorithm is devised. The experimental results on the MovieLens and Netflix datasets show that our model can significantly improve the robustness and recommendation accuracy compared with three baseline methods.

Matching Conditions for Predicting the Random Effects in ANOVA Models

  • Chang, In-Hong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.1-6
    • /
    • 2006
  • We consider the issue of Bayesian prediction of the unobservable random effects, And we characterize priors that ensure approximate frequentist validity of posterior quantiles of unobservable random effects. Finally we show that the probability matching criteria for prediction of unobservable random effects in one-way random ANOVA model.

  • PDF