• Title/Summary/Keyword: Bayesian Method

Search Result 1,146, Processing Time 0.028 seconds

Adaptive Noise Reduction Algorithm for an Image Based on a Bayesian Method

  • Kim, Yeong-Hwa;Nam, Ji-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.619-628
    • /
    • 2012
  • Noise reduction is an important issue in the field of image processing because image noise lowers the quality of the original pure image. The basic difficulty is that the noise and the signal are not easily distinguished. Simple smoothing is the most basic and important procedure to effectively remove the noise; however, the weakness is that the feature area is simultaneously blurred. In this research, we use ways to measure the degree of noise with respect to the degree of image features and propose a Bayesian noise reduction method based on MAP (maximum a posteriori). Simulation results show that the proposed adaptive noise reduction algorithm using Bayesian MAP provides good performance regardless of the level of noise variance.

Uncertainty decomposition in climate-change impact assessments: a Bayesian perspective

  • Ohn, Ilsang;Seo, Seung Beom;Kim, Seonghyeon;Kim, Young-Oh;Kim, Yongdai
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.109-128
    • /
    • 2020
  • A climate-impact projection usually consists of several stages, and the uncertainty of the projection is known to be quite large. It is necessary to assess how much each stage contributed to the uncertainty. We call an uncertainty quantification method in which relative contribution of each stage can be evaluated as uncertainty decomposition. We propose a new Bayesian model for uncertainty decomposition in climate change impact assessments. The proposed Bayesian model can incorporate uncertainty of natural variability and utilize data in control period. We provide a simple and efficient Gibbs sampling algorithm using the auxiliary variable technique. We compare the proposed method with other existing uncertainty decomposition methods by analyzing streamflow data for Yongdam Dam basin located at Geum River in South Korea.

Motivation-Based Action Selection Mechanism with Bayesian Affordance Models for Intelligence Robot (지능로봇의 동기 기반 행동선택을 위한 베이지안 행동유발성 모델)

  • Son, Gwang-Hee;Lee, Sang-Hyoung;Huh, Il-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.264-266
    • /
    • 2009
  • A skill is defined as the special ability to do something well, especially as acquired by learning and practice. To learn a skill, a Bayesian network model for representing the skill is first learned. We will regard the Bayesian network for a skill as an affordance. We propose a soft Behavior Motivation(BM) switch as a method for ordering affordances to accomplish a task. Then, a skill is constructed as a combination of an affordance and a soft BM switch. To demonstrate the validity of our proposed method, some experiments were performed with GENIBO(Pet robot) performing a task using skills of Search-a-target-object, Approach-a-target-object, Push-up-in front of -a-target-object.

  • PDF

Bayesian Method on Sequential Preventive Maintenance Problem

  • Kim Hee-Soo;Kwon Young-Sub;Park Dong-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.191-204
    • /
    • 2006
  • This paper develops a Bayesian method to derive the optimal sequential preventive maintenance(PM) policy by determining the PM schedules which minimize the mean cost rate. Such PM schedules are derived based on a general sequential imperfect PM model proposed by Lin, Zuo and Yam(2000) and may have unequal length of PM intervals. To apply the Bayesian approach in this problem, we assume that the failure times follow a Weibull distribution and consider some appropriate prior distributions for the scale and shape parameters of the Weibull model. The solution is proved to be finite and unique under some mild conditions. Numerical examples for the proposed optimal sequential PM policy are presented for illustrative purposes.

Bayesian Analysis for Neural Network Models

  • Chung, Younshik;Jung, Jinhyouk;Kim, Chansoo
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.155-166
    • /
    • 2002
  • Neural networks have been studied as a popular tool for classification and they are very flexible. Also, they are used for many applications of pattern classification and pattern recognition. This paper focuses on Bayesian approach to feed-forward neural networks with single hidden layer of units with logistic activation. In this model, we are interested in deciding the number of nodes of neural network model with p input units, one hidden layer with m hidden nodes and one output unit in Bayesian setup for fixed m. Here, we use the latent variable into the prior of the coefficient regression, and we introduce the 'sequential step' which is based on the idea of the data augmentation by Tanner and Wong(1787). The MCMC method(Gibbs sampler and Metropolish algorithm) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data.

Bayesian Analysis of Software Reliability Growth Model with Negative Binomial Information (음이항분포 정보를 가진 베이지안 소프트웨어 신뢰도 성장모형에 관한 연구)

  • Kim, Hui-Cheol;Park, Jong-Gu;Lee, Byeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.852-861
    • /
    • 2000
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals betwewn software failures. In this paper, using priors for the number of fault with the negative binomial distribution nd the error rate with gamma distribution, Bayesian inference and model selection method for Jelinski-Moranda and Goel-Okumoto and Schick-Wolverton models in software reliability. For model selection, we explored the sum of the relative error, Braun statistic and median variation. In Bayesian computation process, we could avoid the multiple integration by the use of Gibbs sampling, which is a kind of Markov Chain Monte Carolo method to compute the posterior distribution. Using simulated data, Bayesian inference and model selection is studied.

  • PDF

Bayesian Estimation for Inflection S-shaped Software Reliability Growth Model (변곡 S-형 소프트웨어 신뢰도성장모형의 베이지안 모수추정)

  • Kim, Hee-Soo;Lee, Chong-Hyung;Park, Dong-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.37 no.4
    • /
    • pp.16-22
    • /
    • 2009
  • The inflection S-shaped software reliability growth model (SRGM) proposed by Ohba(1984) is one of the most commonly used models and has been discussed by many authors. The main purpose of this paper is to estimate the parameters of Ohba's SRGM within the Bayesian framework by applying the Markov chain Monte Carlo techniques. While the maximum likelihood estimates for these parameters are well known, the Bayesian method for the inflection S-shaped SRGM have not been discussed in the literature. The proposed methods can be quite flexible depending on the choice of prior distributions for the parameters of interests. We also compare the Bayesian methods with the maximum likelihood method numerically based on the real data.

A Study on the Distributed Lag Model by Bayesian Decision Making Method (분포시차모형의 Bayesian 의사결정법에 관한 연구)

  • 이필령
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.8 no.11
    • /
    • pp.27-34
    • /
    • 1985
  • Recently the distributed lag models for time series data have been used in several quantitative analyses. But the analyses of time series which have the serial correlations in error terms and the lagged values of dependent variables violate the hypothesis of OLS method. This paper suggests that the approach technique of distributed lay model with serial correlation should be applied by the Bayesian inference to estimate the parameters. For the application of distributed lag model by Bayesian analysis, the data for monthly consumption expenditure per household by items of commodities from 1972 to 1981 are used in order to estimate the lagged coefficient of processed food and the regression coefficient of the food and beverage.

  • PDF

Computationally efficient variational Bayesian method for PAPR reduction in multiuser MIMO-OFDM systems

  • Singh, Davinder;Sarin, Rakesh Kumar
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.298-307
    • /
    • 2019
  • This paper investigates the use of the inverse-free sparse Bayesian learning (SBL) approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency-division multiplexing (OFDM)-based multiuser massive multiple-input multiple-output (MIMO) systems. The Bayesian inference method employs a truncated Gaussian mixture prior for the sought-after low-PAPR signal. To learn the prior signal, associated hyperparameters and underlying statistical parameters, we use the variational expectation-maximization (EM) iterative algorithm. The matrix inversion involved in the expectation step (E-step) is averted by invoking a relaxed evidence lower bound (relaxed-ELBO). The resulting inverse-free SBL algorithm has a much lower complexity than the standard SBL algorithm. Numerical experiments confirm the substantial improvement over existing methods in terms of PAPR reduction for different MIMO configurations.