• Title/Summary/Keyword: Bayesian Classification

Search Result 253, Processing Time 0.02 seconds

A Bayesian Validation Method for Classification of Microarray Expression Data (마이크로어레이 발현 데이터 분류를 위한 베이지안 검증 기법)

  • Park, Su-Young;Jung, Jong-Pil;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2039-2044
    • /
    • 2006
  • Since the bio-information now even exceeds the capability of human brain, the techniques of data mining and artificial intelligent are needed to deal with the information in this field. There are many researches about using DNA microarray technique which can obtain information from thousands of genes at once, for developing new methods of analyzing and predicting of diseases. Discovering the mechanisms of unknown genes by using these new method is expecting to develop the new drugs and new curing methods. In this Paper, We tested accuracy on classification of microarray in Bayesian method to compare normalization method's Performance after dividing data in two class that is a feature abstraction method through a normalization process which reduce or remove noise generating in microarray experiment by various factors. And We represented that it improve classification performance in 95.89% after Lowess normalization.

Bayesian Model for Probabilistic Unsupervised Learning (확률적 자율 학습을 위한 베이지안 모델)

  • 최준혁;김중배;김대수;임기욱
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.849-854
    • /
    • 2001
  • GTM(Generative Topographic Mapping) model is a probabilistic version of the SOM(Self Organizing Maps) which was proposed by T. Kohonen. The GTM is modelled by latent or hidden variables of probability distribution of data. It is a unique characteristic not implemented in SOM model, and, therefore, it is possible with GTM to analyze data accurately, thereby overcoming the limits of SOM. In the present investigation we proposed a BGTM(Bayesian GTM) combined with Bayesian learning and GTM model that has a small mis-classification ratio. By combining fast calculation ability and probabilistic distribution of data of GTM with correct reasoning based on Bayesian model, the BGTM model provided improved results, compared with existing models.

  • PDF

Texture Segmentation Using Statistical Characteristics of SOM and Multiscale Bayesian Image Segmentation Technique (SOM의 통계적 특성과 다중 스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할)

  • Kim Tae-Hyung;Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.43-54
    • /
    • 2005
  • This paper proposes a novel texture segmentation method using Bayesian image segmentation method and SOM(Self Organization feature Map). Multi-scale wavelet coefficients are used as the input of SOM, and likelihood and a posterior probability for observations are obtained from trained SOMs. Texture segmentation is performed by a posterior probability from trained SOMs and MAP(Maximum A Posterior) classification. And the result of texture segmentation is improved by context information. This proposed segmentation method shows better performance than segmentation method by HMT(Hidden Markov Tree) model. The texture segmentation results by SOM and multi-sclae Bayesian image segmentation technique called HMTseg also show better performance than by HMT and HMTseg.

Multinomial Group Testing with Small-Sized Pools and Application to California HIV Data: Bayesian and Bootstrap Approaches

  • Kim, Jong-Min;Heo, Tae-Young;An, Hyong-Gin
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2006.06a
    • /
    • pp.131-159
    • /
    • 2006
  • This paper consider multinomial group testing which is concerned with classification each of N given units into one of k disjoint categories. In this paper, we propose exact Bayesian, approximate Bayesian, bootstrap methods for estimating individual category proportions using the multinomial group testing model proposed by Bar-Lev et al (2005). By the comparison of Mcan Squre Error (MSE), it is shown that the exact Bayesian method has a bettor efficiency and consistency than maximum likelihood method. We suggest an approximate Bayesian approach using Markov Chain Monte Carlo (MCMC) for posterior computation. We derive exact credible intervals based on the exact Bayesian estimators and present confidence intervals using the bootstrap and MCMC. These intervals arc shown to often have better coverage properties and similar mean lengths to maximum likelihood method already available. Furthermore the proposed models are illustrated using data from a HIV blooding test study throughout California, 2000.

  • PDF

Despeckling and Classification of High Resolution SAR Imagery (고해상도 SAR 영상 Speckle 제거 및 분류)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.455-464
    • /
    • 2009
  • Lee(2009) proposed the boundary-adaptive despeckling method using a Bayesian model which is based on the lognormal distribution for image intensity and a Markov random field(MRF) for image texture. This method employs the Point-Jacobian iteration to obtain a maximum a posteriori(MAP) estimate of despeckled imagery. The boundary-adaptive algorithm is designed to use less information from more distant neighbors as the pixel is closer to boundary. It can reduce the possibility to involve the pixel values of adjacent region with different characteristics. The boundary-adaptive scheme was comprehensively evaluated using simulation data and the effectiveness of boundary adaption was proved in Lee(2009). This study, as an extension of Lee(2009), has suggested a modified iteration algorithm of MAP estimation to enhance computational efficiency and to combine classification. The experiment of simulation data shows that the boundary-adaption results in yielding clear boundary as well as reducing error in classification. The boundary-adaptive scheme has also been applied to high resolution Terra-SAR data acquired from the west coast of Youngjong-do, and the results imply that it can improve analytical accuracy in SAR application.

Emotion Recognition Based on Facial Expression by using Context-Sensitive Bayesian Classifier (상황에 민감한 베이지안 분류기를 이용한 얼굴 표정 기반의 감정 인식)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.653-662
    • /
    • 2006
  • In ubiquitous computing that is to build computing environments to provide proper services according to user's context, human being's emotion recognition based on facial expression is used as essential means of HCI in order to make man-machine interaction more efficient and to do user's context-awareness. This paper addresses a problem of rigidly basic emotion recognition in context-sensitive facial expressions through a new Bayesian classifier. The task for emotion recognition of facial expressions consists of two steps, where the extraction step of facial feature is based on a color-histogram method and the classification step employs a new Bayesian teaming algorithm in performing efficient training and test. New context-sensitive Bayesian learning algorithm of EADF(Extended Assumed-Density Filtering) is proposed to recognize more exact emotions as it utilizes different classifier complexities for different contexts. Experimental results show an expression classification accuracy of over 91% on the test database and achieve the error rate of 10.6% by modeling facial expression as hidden context.

Bayesian Multiple Change-Point Estimation and Segmentation

  • Kim, Jaehee;Cheon, Sooyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.439-454
    • /
    • 2013
  • This study presents a Bayesian multiple change-point detection approach to segment and classify the observations that no longer come from an initial population after a certain time. Inferences are based on the multiple change-points in a sequence of random variables where the probability distribution changes. Bayesian multiple change-point estimation is classifies each observation into a segment. We use a truncated Poisson distribution for the number of change-points and conjugate prior for the exponential family distributions. The Bayesian method can lead the unsupervised classification of discrete, continuous variables and multivariate vectors based on latent class models; therefore, the solution for change-points corresponds to the stochastic partitions of observed data. We demonstrate segmentation with real data.

DIAGNOSING CARDIOVASCULAR DISEASE FROM HRV DATA USING FP-BASED BAYESIAN CLASSIFIER

  • Lee, Heon-Gyu;Lee, Bum-Ju;Noh, Ki-Yong;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.868-871
    • /
    • 2006
  • Mortality of domestic people from cardiovascular disease ranked second, which followed that of from cancer last year. Therefore, it is very important and urgent to enhance the reliability of medical examination and treatment for cardiovascular disease. Heart Rate Variability (HRV) is the most commonly used noninvasive methods to evaluate autonomic regulation of heart rate and conditions of a human heart. In this paper, our aim is to extract a quantitative measure for HRV to enhance the reliability of medical examination for cardiovascular disease, and then develop a prediction method for extracting multi-parametric features by analyzing HRV from ECG. In this study, we propose a hybrid Bayesian classifier called FP-based Bayesian. The proposed classifier use frequent patterns for building Bayesian model. Since the volume of patterns produced can be large, we offer a rule cohesion measure that allows a strong push of pruning patterns in the pattern-generating process. We conduct an experiment for the FP-based Bayesian classifier, which utilizes multiple rules and pruning, and biased confidence (or cohesion measure) and dataset consisting of 670 participants distributed into two groups, namely normal and patients with coronary artery disease.

  • PDF

Chaff Echo Detecting and Removing Method using Naive Bayesian Network (나이브 베이지안 네트워크를 이용한 채프에코 탐지 및 제거 방법)

  • Lee, Hansoo;Yu, Jungwon;Park, Jichul;Kim, Sungshin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.901-906
    • /
    • 2013
  • Chaff is a kind of matter spreading atmosphere with the purpose of preventing aircraft from detecting by radar. The chaff is commonly composed of small aluminum pieces, metallized glass fiber, or other lightweight strips which consists of reflecting materials. The chaff usually appears on the radar images as narrow bands shape of highly reflective echoes. And the chaff echo has similar characteristics to precipitation echo, and it interrupts weather forecasting process and makes forecasting accuracy low. In this paper, the chaff echo recognizing and removing method is suggested using Bayesian network. After converting coordinates from spherical to Cartesian in UF (Universal Format) radar data file, the characteristics of echoes are extracted by spatial and temporal clustering. And using the data, as a result of spatial and temporal clustering, a classification process for analyzing is performed. Finally, the inference system using Bayesian network is applied. As a result of experiments with actual radar data in real chaff echo appearing case, it is confirmed that Bayesian network can distinguish between chaff echo and non-chaff echo.

Bayesian Network-based Data Analysis for Diagnosing Retinal Disease (망막 질환 진단을 위한 베이지안 네트워크에 기초한 데이터 분석)

  • Kim, Hyun-Mi;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.269-280
    • /
    • 2013
  • In this paper, we suggested the possibility of using an efficient classifier for the dependency analysis of retinal disease. First, we analyzed the classification performance and the prediction accuracy of GBN (General Bayesian Network), GBN with reduced features by Markov Blanket and TAN (Tree-Augmented Naive Bayesian Network) among the various bayesian networks. And then, for the first time, we applied TAN showing high performance to the dependency analysis of the clinical data of retinal disease. As a result of this analysis, it showed applicability in the diagnosis and the prediction of prognosis of retinal disease.