• Title/Summary/Keyword: Bayesian 법

Search Result 186, Processing Time 0.027 seconds

Spam Message Filtering with Bayesian Approach for Internet Communities (베이지안을 이용한 인터넷 커뮤니티 상의 유해 메시지 차단 기법)

  • Kim, Bum-Bae;Choi, Hyoung-Kee
    • The KIPS Transactions:PartC
    • /
    • v.13C no.6 s.109
    • /
    • pp.733-740
    • /
    • 2006
  • Spam Message has been Causing widespread damages on the Internet. One source of the problems is rooted from an anonymously posted message in the bulletin board in Internet communities. This type of the Spam messages tries to advertise products, to harm other's reputation, to deliver religious messages and so on. In this paper we present the Spam message filtering using the Bayesian approach. In order to increase usefulness of the Spam filter in the bulletin board in Internet communities, we made the Spam filter which can divide the Spam message into six categories such as advertisement, pornography, abuse, religion and other. The test conducted against messages posted on the popular web sites.

Region Growing Based Variable Window Size Decision Algorithm for Image Denoising (영상 잡음 제거를 위한 영역 확장 기반 가변 윈도우 크기 결정 알고리즘)

  • 엄일규;김유신
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.111-116
    • /
    • 2004
  • It is essential to know the information about the prior model for wavelet coefficients, the probability distribution of noise, and the variance of wavelet coefficients for noise reduction using Bayesian estimation in wavelet domain. In general denoising methods, the signal variance is estimated from the proper prior model for wavelet coefficients. In this paper, we propose a variable window size decision algorithm to estimate signal variance according to image region. Simulation results shows the proposed method have better PSNRs than those of the state of art denoising methods.

An Improved Map Construction for Mobile Robot Using Fuzzy Logic and Genetic Algorithm (퍼지 논리와 진화알고리즘을 이용한 자율이동로봇의 향상된 지도 작성)

  • Jin Kwang-Sik;Ahn Ho-Gyun;Yoon Tae-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.330-336
    • /
    • 2005
  • Existing Bayesian update method using ultrasonic sensors only for mobile robot map building has a problem of the quality of map being degraded in the wall with irregularity, which is caused by the wide beam distribution. For improving this problem, an infrared sensors aided map building method is presented in this paper. Information of obstacle at each region in ultrasonic sensor beam is acquired using the infrared sensors and the information is used to get the confidence of ultrasonic sensor information via fuzzy inference system and genetic algorithm. Combining the resulting confidence with the result of Bayesian update method, an improve map is constructed. The proposed method showed good results in the simulations and experiments.

Bayesian analysis of directional conditionally autoregressive models (방향성 공간적 조건부 자기회귀 모형의 베이즈 분석 방법)

  • Kyung, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1133-1146
    • /
    • 2016
  • Counts or averages over arbitrary regions are often analyzed using conditionally autoregressive (CAR) models. The spatial neighborhoods within CAR model are generally formed using only the inter-distance or boundaries between the sub-regions. Kyung and Ghosh (2009) proposed a new class of models to accommodate spatial variations that may depend on directions, using different weights given to neighbors in different directions. The proposed model, directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Bayesian inference method is discussed based on efficient Markov chain Monte Carlo (MCMC) sampling of the posterior distributions of the parameters. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

Assessment of uncertainty associated with parameter of gumbel probability density function in rainfall frequency analysis (강우빈도해석에서 Bayesian 기법을 이용한 Gumbel 확률분포 매개변수의 불확실성 평가)

  • Moon, Jang-Won;Moon, Young-Il;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.411-422
    • /
    • 2016
  • Rainfall-runoff modeling in conjunction with rainfall frequency analysis has been widely used for estimating design floods in South Korea. However, uncertainties associated with underlying distribution and sampling error have not been properly addressed. This study applied a Bayesian method to quantify the uncertainties in the rainfall frequency analysis along with Gumbel distribution. For a purpose of comparison, a probability weighted moment (PWM) was employed to estimate confidence interval. The uncertainties associated with design rainfalls were quantitatively assessed using both Bayesian and PWM methods. The results showed that the uncertainty ranges with PWM are larger than those with Bayesian approach. In addition, the Bayesian approach was able to effectively represent asymmetric feature of underlying distribution; whereas the PWM resulted in symmetric confidence interval due to the normal approximation. The use of long period data provided better results leading to the reduction of uncertainty in both methods, and the Bayesian approach showed better performance in terms of the reduction of the uncertainty.

Using Bayesian Estimation Technique to Analyze a Dichotomous Choice Contingent Valuation Data (베이지안 추정법을 이용한 양분선택형 조건부 가치측정모형의 분석)

  • Yoo, Seung-Hoon
    • Environmental and Resource Economics Review
    • /
    • v.11 no.1
    • /
    • pp.99-119
    • /
    • 2002
  • As an alternative to classical maximum likelihood approach for analyzing dichotomous choice contingent valuation (DCCV) data, this paper develops a Bayesian approach. By using the idea of Gibbs sampling and data augmentation, the approach enables one to perform exact inference for DCCV models. A by-product from the approach is welfare measure, such as the mean willingness to pay, and its confidence interval, which can be used for policy analysis. The efficacy of the approach relative to the classical approach is discussed in the context of empirical DCCV studies. It is concluded that there appears to be considerable scope for the use of the Bayesian analysis in dealing with DCCV data.

  • PDF

Optimal Maintenance Policy Using Non-Informative Prior Distribution and Marcov Chain Monte Carlo Method (사전확률분포와 Marcov Chain Monte Carlo법을 이용한 최적보전정책 연구)

  • Ha, Jung Lang;Park, Minjae
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.188-196
    • /
    • 2017
  • Purpose: The purpose of this research is to determine optimal replacement age using non-informative prior information and Bayesian method. Methods: We propose a novel approach using Bayesian method to determine the optimal replacement age in block replacement policy by defining the prior probability with data on failure time and repair time. The Marcov Chain Monte Carlo simulation is used to investigate the asymptotic distribution of posterior parameters. Results: An optimal replacement age of block replacement policy is determined which minimizes cost and nonoperating time when no information on prior distribution of parameters is given. Conclusion: We find the posterior distribution of parameters when lack of information on prior distribution, so that the optimal replacement age which minimizes the total cost and maximizes the total values is determined.

Productivity management methodology development using Bayesian Approach (베이시안 접근법을 이용한 생산성 관리 방안 제시)

  • Ko, Yong-Ho;Lee, Tae-Hee;Han, Seung-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.21-22
    • /
    • 2013
  • Construction industry has become higher, larger and more complicated. Construction projects demand precise planning and management prior and during actual operation. However, it has been analyzed that the process planning in the construction site has been made by the site engineer experience mostly that usually results in unreliable results. Numerous studies in this field have been conducted trying to solve such problems developing methodologies to suggest quantitative results. It has been analyzed that many studies have focused on limited data only and neglected suggesting an appropriate methodology for changing data applications. Therefore, this study suggests a methodology that effectively manages construction productivity by applying bayesian approach focusing on the high-rise curtain wall operations.

  • PDF

Bayesian analysis of latent factor regression model (내재된 인자회귀모형의 베이지안 분석법)

  • Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.4
    • /
    • pp.365-377
    • /
    • 2020
  • We discuss latent factor regression when constructing a common structure inherent among explanatory variables to solve multicollinearity and use them as regressors to construct a linear model of a response variable. Bayesian estimation with LASSO prior of a large penalty parameter to construct a significant factor loading matrix of intrinsic interests among infinite latent structures. The estimated factor loading matrix with estimated other parameters can be inversely transformed into linear parameters of each explanatory variable and used as prediction models for new observations. We apply the proposed method to Product Service Management data of HBAT and observe that the proposed method constructs the same factors of general common factor analysis for the fixed number of factors. The calculated MSE of predicted values of Bayesian latent factor regression model is also smaller than the common factor regression model.

A study on patent evaluation model based on Bayesian approach of the structural equation model (구조방정식 모형의 베이지안 접근법 기반의 특허평가 모델링에 대한 연구)

  • Woo, Ho-young;Kwak, Jungae;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.901-916
    • /
    • 2017
  • Recently, the industrial paradigm shift to the fourth industry has already begun, and the importance of patents as intangible intellectual property in the fourth industry era is increasing day by day. Since the technical valuation of a patent is calculated according to the opinion of experts, it is costly and time consuming, and hence, the quality of the patent is judged based on subjective opinions of non-experts. Therefore, it is necessary to develop an objective and rational evaluation system for the qualitative level of patents. In this paper, we classify the valuation of patents into technicality, rights, and usability, and consider the quantitative and objective evaluation modeling of patents using Bayesian structural equation model. In particular, based on the data collected by the Korea Invention Promotion Association, we apply the Bayesian approach, which is capable of stable modeling even under small samples by using prior information, and the structural equation model, which is excellent for modeling and evaluating qualitative performance that is difficult to measure directly, to develop a patent evaluation model.