• Title/Summary/Keyword: Bayesian 법

Search Result 186, Processing Time 0.026 seconds

Understanding Bayesian Experimental Design with Its Applications (베이지안 실험계획법의 이해와 응용)

  • Lee, Gunhee
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1029-1038
    • /
    • 2014
  • Bayesian experimental design is a useful concept in applied statistics for the design of efficient experiments especially if prior knowledge in the experiment is available. However, a theoretical or numerical approach is not simple to implement. We review the concept of a Bayesian experiment approach for linear and nonlinear statistical models. We investigate relationships between prior knowledge and optimal design to identify Bayesian experimental design process characteristics. A balanced design is important if we do not have prior knowledge; however, prior knowledge is important in design and expert opinions should reflect an efficient analysis. Care should be taken if we set a small sample size with a vague improper prior since both Bayesian design and non-Bayesian design provide incorrect solutions.

A Bayesian test for the first-order autocorrelations in regression analysis (회귀모형 오차항의 1차 자기상관에 대한 베이즈 검정법)

  • 김혜중;한성실
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.1
    • /
    • pp.97-111
    • /
    • 1998
  • This paper suggests a Bayesian method for testing first-order markov correlation among linear regression disturbances. As a Bayesian test criterion, Bayes factor is derived in the form of generalized Savage-Dickey density ratio that is easily estimated by means of posterior simulation via Gibbs sampling scheme. Performance of the Bayesian test is evaluated and examined based upon a Monte Carlo experiment and an empirical data analysis. Efficiency of the posterior simulation is also examined.

  • PDF

Evaluations of Small Area Estimations with/without Spatial Terms (공간 통계 활용에 따른 소지역 추정법의 평가)

  • Shin, Key-Il;Choi, Bong-Ho;Lee, Sang-Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.229-244
    • /
    • 2007
  • Among the small area estimation methods, it has been known that hierarchical Bayesian(HB) approach is the most reasonable and effective method. However any model based approaches need good explanatory variables and finding them is the key role in the model based approach. As the lacking of explanatory variables, adopting the spatial terms in the model was introduced. Here in this paper, we evaluate the model based methods with/without spatial terms using the diagnostic methods which were introduced by Brown et al. (2001). And Economic Active Population Survey(2005) is used for data analysis.

A Study on the Lifetime Prediction of Device by the Method of Bayesian Estimate (베이지안 추정법에 의한 소자의 수명 예측에 관한 연구)

  • 오종환;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1446-1452
    • /
    • 1994
  • In this paper, Weibull distribution is applied to the lifetme distribution of a device. The method of Bayesian estimate used to estimate requiring parameter in order to predict lifetime of device using accelerated lifetime test data, namely failure time of device. The method of Bayesian estimate needs prior information in order to estimate parameter. But this paper proposed the method of parameter estimate without prior information. As stress is temperature, Arrhenius model is applied and the method of linear estimate is applied to predict lifetime of device at the state of normal operation.

  • PDF

Bayesian Reliability Analysis Using Kriging Dimension Reduction Method (KDRM) (크리깅 기반 차원감소법을 이용한 베이지안 신뢰도 해석)

  • An, Da-Wn;Choi, Joo-Ho;Won, Jun-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.602-607
    • /
    • 2008
  • A technique for reliability-based design optimization(RBDO) is developed based on the Bayesian approach, which can deal with the epistemic uncertainty arising due to the limited number of data. Until recently, the conventional RBDO was implemented mostly by assuming the uncertainty as aleatory which means the statistical properties are completely known. In practice, however, this is not the case due to the insufficient data for estimating the statistical information, which makes the existing RBDO methods less useful. In this study, a Bayesian reliability is introduced to take account of the epistemic uncertainty, which is defined as the lower confidence bound of the probability distribution of the original reliability. In this case, the Bayesian reliability requires double loop of the conventional reliability analyses, which can be computationally expensive. Kriging based dimension reduction method(KDRM), which is a new efficient tool for the reliability analysis, is employed to this end. The proposed method is illustrated using a couple of numerical examples.

  • PDF

Texture Segmentation Using Statistical Characteristics of SOM and Multiscale Bayesian Image Segmentation Technique (SOM의 통계적 특성과 다중 스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할)

  • Kim Tae-Hyung;Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.43-54
    • /
    • 2005
  • This paper proposes a novel texture segmentation method using Bayesian image segmentation method and SOM(Self Organization feature Map). Multi-scale wavelet coefficients are used as the input of SOM, and likelihood and a posterior probability for observations are obtained from trained SOMs. Texture segmentation is performed by a posterior probability from trained SOMs and MAP(Maximum A Posterior) classification. And the result of texture segmentation is improved by context information. This proposed segmentation method shows better performance than segmentation method by HMT(Hidden Markov Tree) model. The texture segmentation results by SOM and multi-sclae Bayesian image segmentation technique called HMTseg also show better performance than by HMT and HMTseg.

Identification of Uncertainty in Fitting Rating Curve with Bayesian Regression (베이지안 회귀분석을 이용한 수위-유량 관계곡선의 불확실성 분석)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.943-958
    • /
    • 2008
  • This study employs Bayesian regression analysis for fitting discharge rating curves. The parameter estimates using the Bayesian regression analysis were compared to ordinary least square method using the t-distribution. In these comparisons, the mean values from the t-distribution and the Bayesian regression are not significantly different. However, the difference between upper and lower limits are remarkably reduced with the Bayesian regression. Therefore, from the point of view of uncertainty analysis, the Bayesian regression is more attractive than the conventional method based on a t-distribution because the data size at the site of interest is typically insufficient to estimate the parameters in rating curve. The merits and demerits of the two types of estimation methods are analyzed through the statistical simulation considering heteroscedasticity. The validation of the Bayesian regression is also performed using real stage-discharge data which were observed at 5 gauges on the Anyangcheon basin. Because the true parameters at 5 gauges are unknown, the quantitative accuracy of the Bayesian regression can not be assessed. However, it can be suggested that the uncertainty in rating curves at 5 gauges be reduced by Bayesian regression.

Bayesian analysis of insurance risk model with parameter uncertainty (베이지안 접근법과 모수불확실성을 반영한 보험위험 측정 모형)

  • Cho, Jaerin;Ji, Hyesu;Lee, Hangsuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • In the Heckman-Meyers model, which is frequently referred by IAA, Swiss Solvency Test, EU Solvency II, the assumption of parameter distribution is key factor. While in theory Bayesian analysis somewhat reflects parameter uncertainty using prior distribution, it is often the case where both Heckman-Meyers and Bayesian are necessary to better manage the parameter uncertainty. Therefore, this paper proposes the use of Bayesian H-M CRM, a combination of Heckman-Meyers model and Bayesian, and analyzes its efficiency.

Imputation for Binary or Ordered Categorical Traits Based on the Bayesian Threshold Model (베이지안 분계점 모형에 의한 순서 범주형 변수의 대체)

  • Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.597-606
    • /
    • 2005
  • The nonresponse in sample survey causes a problem when it comes time to analyze dataset in public-use files where the user has only complete-data methods available and has limited information about the reasons for nonresponse. Recently imputation for nonresponse is becoming a standard approach for handling nonresponse and various imputation methods have been devised . However, most imputation methods concern with continuous traits while many interesting features are measured by binary or ordered categorical scales in sample survey. In this note. an imputation method for ignorable nonresponse in binary or ordered categorical traits is considered.

Parameter Optimization and Uncertainty Analysis of the Rainfall-Runoff Model Coupled with Hierarchical Bayesian Inference Scheme (Hierarchical Bayesian 기법을 통한 강우-유출모형 매개변수의 최적화 및 불확실성 분석)

  • Mun, Yeong-Il;Gwon, Hyeon-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1752-1756
    • /
    • 2007
  • 정교한 강우-유출 모의를 위해서는 적절한 매개변수의 추정이 필수적이며, 매개변수 추정 방법은 시행착오(trial and error)에 의한 수동보정법과 최적화방법을 사용한 자동보정법으로 구분할 수 있다. 모형의 매개변수의 수가 많은 경우 수동보정법에 의한 매개변수 추정은 매우 어렵다. 자동 보정법에 사용되는 최적화방법은 Rosenbrock 알고리즘, patten search, 컴플렉스(complex) 방법, Powell 방법 등과 같은 지역최적화 방법과 전역최적화 방법으로 나눌 수 있다. 그러나 기존 방법론들은 매개변수의 최적화를 추적하기 위한 알고리즘이 대부분이며 이들 매개변수에 관련된 불확실성을 평가하는데는 미흡한 단접이 있다. 이러한 점에서 본 연구에서는 강우-유출모형의 매개변수 추정에 있어서 불확실성을 평가할 수 있는 새로운 방법론을 검토하고자 한다. 매개변수와 관련된 불확실성을 평가하기 위한 방법은 여러 가지가 있으나 통계적으로 매우 우수한 능력을 보이는 Hierarchical Bayesian 알고리즘을 Probability-Distributed 강우-유출 모형에 적용하였다. 본 방법론은 최적화와 동시에 각 매개변수에 관련된 사후분포(posterior distribution)의 추정이 가능하므로 모형이 갖는 불확실성을 효과적으로 평가할 수 있다. 따라서, 수자원 관리에 있어서 불확실성을 고려할 수 있으므로 보다 수리수문학적 위험도를 저감할 수 있을 것으로 판단된다.

  • PDF