• Title/Summary/Keyword: Bayesian

Search Result 2,742, Processing Time 0.059 seconds

Bayesian Inference of Behavior Network for Perceiving Moving Objects and Generating Behaviors of Agent (에이전트의 움직이는 물체 인지와 행동 생성을 위한 행동 네트워크의 베이지안 추론)

  • 민현정;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.46-48
    • /
    • 2003
  • 본 논문에서는 실제환경에서와 같이 예측할 수 없는 상황에서 에이전트의 인지와 자동 행동 생성 방법을 제안한다. 전통적인 에이전트의 지능제어 방법은 환경에 대해 알고 있는 정보를 이용한다는 제약 때문에 다양하고 복잡한 환경에 적응할 수 없었다. 최근, 미리 알려지지 않은 환경에서 자동으로 행동을 생성할 수 있는 센서와 행동을 연결하는 행동 기반의 방법과 추론, 학습 및 계획 기능의 부여를 위한 하이브리드 방법이 연구되고 있다. 본 논문에서는 다양한 환경조건으로 움직이는 장애물을 인지하고 피할 수 있는 행동을 생성하기 위해 행동 네트워크에 Bayesian 네트워크를 결합한 방법을 제안한다. 행동 네트워크는 입력된 센서 정보와 미리 정의된 목적 정보를 가지고 다음에 수행할 가장 높은 우선순위의 행동을 선택한다. 그리고 Bayesian 네트워크는 센서 정보들로부터 상황을 미리 추론하고 이 확률 값을 행동 네트워크의 가중치로 주어 행동 선택을 조정하도록 한다. 로봇 시뮬레이터를 이용한 실험을 통해 제안한 행동 네트워크와 Bayesian 네트워크의 결합 방법으로 움직이는 장애물을 피하고 목적지를 찾아가는 것을 확인할 수 있었다.

  • PDF

Recommendation Method using Naive Bayesian algorithm in Hybrid User and Item based Collaborative Filtering (사용자와 아이템의 혼합 협력적 필터링에서 Naive Bayesian 알고리즘을 이용한 추천 방법)

  • 김용집;정경용;한승진;고종철;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.184-186
    • /
    • 2003
  • 기존의 사용자 기반 협력적 필터링이 가지는 단점으로 지적되었던 희박성과 확장성의 문제를 아이템 기반 협력적 필터링 기법을 통하여 개선하려는 연구가 진행되어 왔다. 실제로 많은 성과가 있었지만. 여전히 명시적 데이터를 기반으로 하기 때문에 희박성이 존재하며, 아이템의 속성이 반영되지 않는 문제점이 있다. 본 논문에서는 기존의 아이템 기반 협력적 필터링의 문제점을 보완하기 위하여 사용자와 아이템의 혼합 협력적 필터링에서 Naive Bayesian 알고리즘을 이용한 추천 방법을 제안한다. 제안된 방법에서는 각 사용자와 아이템에 대한 유사도 검색 테이블을 생성한 후, Naive Bayesian 알고리즘으로 아이템을 예측 및 추천함으로써, 성능을 개선하였다. 성능 평가를 위해 기존의 아이템 기반 협력적 필터링 기술과 비교 평가하였다.

  • PDF

Simple Bayesian Model for Improvement of Collaborative Filtering (협업 필터링 개선을 위한 베이지안 모형 개발)

  • Lee, Young-Chan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.232-239
    • /
    • 2005
  • Collaborative-filtering-enabled Web sites that recommend books, CDs, movies, and so on, have become very popular on the Internet. Such sites recommend items to a user on the basis of the opinions of other users with similar tastes. This paper discuss an approach to collaborative filtering based on the Simple Bayesian and apply this model to two variants of the collaborative filtering. One is user-based collaborative filtering, which makes predictions based on the users' similarities. The other is item-based collaborative filtering which makes predictions based on the items' similarities. To evaluate the proposed algorithms, this paper used a database of movie recommendations. Empirical results show that the proposed Bayesian approaches outperform typical correlation-based collaborative filtering algorithms.

  • PDF

T&E Reliability Analysis of Guided Weapons using Bayesian (베이지안 방법론 기반의 유도무기 시험평가 신뢰도 분석)

  • Kim, MoonKi;Kang, SeokJoong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1750-1758
    • /
    • 2015
  • This paper provides Bayesian methodology to estimate the reliability for guided weapons which are not continuously operating. The posterior distribution of subsystems and components becomes the next prior distribution. By analyzing the results of the sub-systems and components presented a method for estimating the reliability of the entire guided weapons. Bayesian methodology using existing test data of subsystems may be used to reduce the sample sizes.

Fast Conditional Independence-based Bayesian Classifier

  • Junior, Estevam R. Hruschka;Galvao, Sebastian D. C. de O.
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.2
    • /
    • pp.162-176
    • /
    • 2007
  • Machine Learning (ML) has become very popular within Data Mining (KDD) and Artificial Intelligence (AI) research and their applications. In the ML and KDD contexts, two main approaches can be used for inducing a Bayesian Network (BN) from data, namely, Conditional Independence (CI) and the Heuristic Search (HS). When a BN is induced for classification purposes (Bayesian Classifier - BC), it is possible to impose some specific constraints aiming at increasing the computational efficiency. In this paper a new CI based approach to induce BCs from data is proposed and two algorithms are presented. Such approach is based on the Markov Blanket concept in order to impose some constraints and optimize the traditional PC learning algorithm. Experiments performed with the ALARM, as well as other six UCI and three artificial domains revealed that the proposed approach tends to execute fewer comparison tests than the traditional PC. The experiments also show that the proposed algorithms produce competitive classification rates when compared with both, PC and Naive Bayes.

Bayesian Analysis for Multiple Change-point hazard Rate Models

  • Jeong, Kwangmo
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.801-812
    • /
    • 1999
  • Change-point hazard rate models arise for example in applying "burn-in" techniques to screen defective items and in studing times until undesirable side effects occur in clinical trials. Sometimes in screening defectives it might be sensible to model two stages of burn-in. In a clinical trial there might be an initial hazard rate for a side effect which after a period of time changes to an intermediate hazard rate before settling into a long term hazard rate. In this paper we consider the multiple change points hazard rate model. The classical approach's asymptotics can be poor for the small to all moderate sample sizes often encountered in practice. We propose a Bayesian approach avoiding asymptotics to provide more reliable inference conditional only upon the data actually observed. The Bayesian models can be fitted using simulation methods. Model comparison is made using recently developed Bayesian model selection criteria. The above methodology is applied to a generated data and to a generated data and the Lawless(1982) failure times of electrical insulation.

  • PDF

Bayesian Estimation for Inflection S-shaped Software Reliability Growth Model (변곡 S-형 소프트웨어 신뢰도성장모형의 베이지안 모수추정)

  • Kim, Hee-Soo;Lee, Chong-Hyung;Park, Dong-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.37 no.4
    • /
    • pp.16-22
    • /
    • 2009
  • The inflection S-shaped software reliability growth model (SRGM) proposed by Ohba(1984) is one of the most commonly used models and has been discussed by many authors. The main purpose of this paper is to estimate the parameters of Ohba's SRGM within the Bayesian framework by applying the Markov chain Monte Carlo techniques. While the maximum likelihood estimates for these parameters are well known, the Bayesian method for the inflection S-shaped SRGM have not been discussed in the literature. The proposed methods can be quite flexible depending on the choice of prior distributions for the parameters of interests. We also compare the Bayesian methods with the maximum likelihood method numerically based on the real data.

Application of Bayesian Networks for Flood Risk Analysis (베이지안 네트워크를 적용한 홍수 위험도 분석)

  • SunWoo, Woo-Yeon;Lee, Kil-Seong;Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.467-467
    • /
    • 2012
  • As the features of recent flood are spatially concentrated, loss of life and property increase by the impact of climate change. In addition to this the public interest in water control information is increased and socially reasonable justification of water control policy is needed. It is necessary to estimate the flood risk in order to let people know the status of flood control and establish flood control policy. For accurate flood risk analysis, we should consider inter-relation between causal factors of flood damage. Hence, flood risk analysis should be applied to interdependence of the factors selected. The Bayesian networks are ideally suited to assist decision-making in situations where there is uncertainty in the data and where the variables are highly interlinked. In this research, to provide more proper water control information the flood risk analysis is performed using the Bayesian networks to handle uncertainty and dependency among 13 specific proxy variables.

  • PDF

Multi-Robot Localization based on Bayesian Multidimensional Scaling

  • Je, Hong-Mo;Kim, Dai-Jin
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.357-361
    • /
    • 2007
  • This paper presents a multi-robot localization based on Bayesian Multidimensional Scaling (BMDS). We propose a robust MDS to handle both the incomplete and noisy data, which is applied to solve the multi-robot localization problem. To deal with the incomplete data, we use the Nystr${\ddot{o}}$m approximation which approximates the full distance matrix. To deal with the uncertainty, we formulate a Bayesian framework for MDS which finds the posterior of coordinates of objects by means of statistical inference. We not only verify the performance of MDS-based multi-robot localization by computer simulations, but also implement a real world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the proposed method is almost similar to that of Monte Carlo Localization(MCL).

  • PDF

Bayesian Approach to Estimation of Copula Parameters and Assessment of Uncertainty for Bivariate Frequency Analysis (Bayesian Copula기반 이변량 비정상성 빈도해석 및 불확실성 평가 모형 개발)

  • Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.35-35
    • /
    • 2016
  • 수문학적 빈도해석은 일반적으로 단변량 형태에 해석이 주를 이루고 있으나, 최근 다변량 해석에 대한 이해와 더불어, 해석 기술 발달에 따라 빈도해석에서도 다변량 해석적 접근이 이루어지고 있다. 기존 다변량 해석 방법으로는 Copula방법 적용이 활발하게 이루어지고 있으며, 특히 가뭄해석에 있어 지속시간과 심도를 동시에 평가하는 2변량 가뭄빈도해석에 대한 연구가 다수 이루어지고 있다. 그러나 기존 해석 방법은 정상성 해석 모형으로서 기상변동성과 같은 시변동성을 고려하는데 한계가 있다. 이러한 점에서 본 연구에서는 Bayesian 기반 Copula 함수의 매개변수를 추정함과 동시에 매개변수의 불확실성을 평가할 수 있는 2변량 비정상성 빈도해석 모형을 개발하였다. 본 연구에서는 최근 우리나라와 미국에서 발생한 2013-15년 가뭄빈도에 대한 평가와 동시에 이에 따른 불확실성을 정량적으로 평가하는 연구를 진행하였다.

  • PDF