• Title/Summary/Keyword: Bayes and empirical Bayes estimation

Search Result 39, Processing Time 0.02 seconds

Empirical Bayes Estimation and Comparison of Credit Migration Matrices (신용등급전이행렬의 경험적 베이지안 추정과 비교)

  • Kim, Sung-Chul;Park, Ji-Yeon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.443-461
    • /
    • 2009
  • In order to overcome the lack of Korean credit rating migration data, we consider an empirical Bayes procedure to estimate credit rating migration matrices. We derive the posterior probabilities of Korean credit rating transitions by utilizing the Moody's rating migration data and the credit rating assignments from Korean rating agency as prior information and likelihood, respectively. Metrics based upon the average transition probability are developed to characterize the migration matrices and compare our Bayesian migration matrices with some given matrices. Time series data for the metrics show that our Bayesian matrices are stable, while the matrices based on Korean data have large variation in time. The bootstrap tests demonstrate that the results from the three estimation methods are significantly different and the Bayesian matrices are more affected by Korean data than the Moody's data. Finally, Monte Carlo simulations for computing the values of a portfolio and its credit VaRs are performed to compare these migration matrices.

Empirical Bayes Estimation of the Probability of Discovering a New Species (신종발견확률의 경험적 베이지안 추정에 관한 연구)

  • Joo Ho Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.1
    • /
    • pp.159-172
    • /
    • 1994
  • An empirical Bayes estimator of the probability of discovering a new species is proposed when some prior information is available on the number f species. The new estimator is shown via simulations to have only a moderate bias and a smaller RMSE than Good's estimator when the species population follows a truncated geometric distribution.

  • PDF

Comparative Study on the Estimation Methods of Traffic Crashes: Empirical Bayes Estimate vs. Observed Crash (교통사고 추정방법 비교 연구: 경험적 베이즈 추정치 vs. 관측교통사고건수)

  • Shin, Kangwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.453-459
    • /
    • 2010
  • In the study of traffic safety, it is utmost important to obtain more reliable estimates of the expected crashes for a site (or a segment). The observed crashes have been mainly used as the estimate of the expected crashes in Korea, while the empirical Bayes (EB) estimates based on the Poisson-gamma mixture model have been used in the USA and several European countries. Although numerous studies have used the EB method for estimating the expected crashes and/or the effectiveness of the safety countermeasures, no past studies examine the difference in the estimation errors between the two estimates. Thus, this study compares the estimation errors of the two estimates using a Monte Carlo simulation study. By analyzing the crash dataset at 3,000,000 simulated sites, this study reveals that the estimation errors of the EB estimates are always less than those of the observed crashes. Hence, it is imperative to incorporate the EB method into the traffic safety research guideline in Korea. However, the results show that the differences in the estimation errors between the two estimates decrease as the uncertainty of the prior distribution increases. Consequently, it is recommended that the EB method be used with reliable hyper-parameter estimates after conducting a comprehensive examination on the estimated negative binomial model.

Optimal bandwidth in nonparametric classification between two univariate densities

  • Hall, Peter;Kang, Kee-Hoon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.1-5
    • /
    • 2002
  • We consider the problem of optimal bandwidth choice for nonparametric classification, based on kernel density estimators, where the problem of interest is distinguishing between two univariate distributions. When the densities intersect at a single point, optimal bandwidth choice depends on curvatures of the densities at that point. The problem of empirical bandwidth selection and classifying data in the tails of a distribution are also addressed.

  • PDF

Simultaneous Estimation of Poisson Means

  • Lee, Seung-Ho
    • The Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.45-50
    • /
    • 1984
  • A problem of estimating the means of Poisson populations using independent samples is considered. The total loss is the sum of component, normalized squared error losses. An empirical Bayes estimator is derived and compared, by Monte Carlo methods, with existing estimators which are proposed as improving estimators upon the usual one. Monte Carlo results show that the performance of the derived estimator is satisfactory over the whole parameter space.

  • PDF

Prediction of 305 Days Milk Production from Early Records in Dairy Cattle Using an Empirical Bayes Method

  • Pereira, J.A.C.;Suzuki, M.;Hagiya, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1511-1515
    • /
    • 2001
  • A prediction of 305 d milk production from early records using an empirical Bayes method (EBM) was performed. The EBM was compared with the best predicted estimation (BPE), test interval method (TIM), and the linearized Wood's model (LWM). Daily milk yields were obtained from 606 first lactation Japanese Holstein cows in three herds. From each file of 305 daily records, 10 random test day records with an interval of approximately one month were taken. The accuracies of these methods were compared using the absolute difference (AD) and the standard deviation (SD) of the differences between the actual and the estimated 305 d milk production. The results showed that in the early stage of the lactation, EBM was superior in obtaining the prediction with high accuracy. When all the herds were analyzed jointly, the AD during the first 5 test day records were on average 373, 590, 917 and 1,042 kg for EBM, BPE, TIM, and LWM, respectively. Corresponding SD for EBM, BPE, TIM, and LWM were on average 488, 733, 747 and 1,605 kg. When the herds were analyzed separately, the EBM predictions retained high accuracy. When more information on the actual lactation was added to the prediction, TIM and LWM gradually achieved better accuracies. Finally, in the last period of the lactation, the accuracy of both of the methods exceeded EBM and BPM. The AD for the last 2 samples analyzing all the herds jointly were on average 141, 142, 164, and 214 kg for LWM, TIM, EBM, and BPE, respectively. In the current practices of collecting monthly records, early prediction of future milk production may be more accurate using EBM. Alternatively, if enough information of the actual lactation is accumulated, TIM may obtain better accuracy in the latter stage of lactation.

EMPIRICAL BAYES THRESHOLDING: ADAPTING TO SPARSITY WHEN IT ADVANTAGEOUS TO DO SO

  • Silverman Bernard W.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.1-29
    • /
    • 2007
  • Suppose one is trying to estimate a high dimensional vector of parameters from a series of one observation per parameter. Often, it is possible to take advantage of sparsity in the parameters by thresholding the data in an appropriate way. A marginal maximum likelihood approach, within a suitable Bayesian structure, has excellent properties. For very sparse signals, the procedure chooses a large threshold and takes advantage of the sparsity, while for signals where there are many non-zero values, the method does not perform excessive smoothing. The scope of the method is reviewed and demonstrated, and various theoretical, practical and computational issues are discussed, in particularly exploring the wide potential and applicability of the general approach, and the way it can be used within more complex thresholding problems such as curve estimation using wavelets.

Assessing Estimation Methods of the Expected Crashes using Panel Traffic Crash Data (패널교통사고자료 기반 기대교통사고건수 추정기법 평가)

  • Sin, Gang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 2011
  • To evaluate highway safety countermeasures or identify high risk sites, the expected crashes for a site (or segment) have been estimated using the panel crash data. Past studies show that two different methods can be employed to estimate the expected crashes: observed crash based method and empirical Bayes (EB) method. This study conducts a simulation study to analyze how the estimation errors of the two estimates are affected by the different structures of the panel crash data and the presence of the change in safety over time. The results disclose that the estimation errors of the observed crash based estimates (i.e. the mean observed crash and comparative parallel estimate) are always greater than those of the EB estimates regardless of the structure of the panel crash data and the presence of the change in safety over time. Thus, it is highly recommended that the EB method be used in the study of traffic safety to obtain more reliable estimates for the expected crashes. In addition, this study corroborates that the estimation errors of the two estimates decrease as the analysis periods increase if safety does not change over time. Hence, it is also recommended that the 1-year analysis period used for identifying high risk sites in Korea be extended to produce more efficient estimates of the time-constant expected crashes.

A study of Bayesian inference on auto insurance credibility application (자동차보험 신뢰도 적용에 대한 베이지안 추론 방식 연구)

  • Kim, Myung Joon;Kim, Yeong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.689-699
    • /
    • 2013
  • This paper studies the partial credibility application method by assuming the empirical prior or noninformative prior informations in auto insurnace business where intensive rating segmentation is expanded because of premium competition. Expanding of rating factor segmetation brings the increase of pricing cells, as a result, the number of cells for partial credibility application will increase correspondingly. This study is trying to suggest more accurate estimation method by considering the Bayesian framework. By using empirically well-known or noninformative information, inducing the proper posterior distribution and applying the Bayes estimate which is minimizing the error loss into the credibility method, we will show the advantage of Bayesian inference by comparison with current approaches. The comparison is implemented with square root rule which is a widely accepted method in insurance business. The convergence level towarding to the true risk will be compared among various approaches. This study introduces the alternative way of redcuing the error to the auto insurance business fields in need of various methods because of more segmentations.