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Simultaneous Estimation of Poisson Means

by Seung-Ho Lee*

AjoutUniversity, Suweon, Korea

1. Introduction

Let X,,...,X, be p independent random variables, and assume that the probability density of X,
with respect to some measure g; is f;(z:|0)), i=1, ..., p, where 0=(0,,...,0,) is some unknown para-

meter. We use the notation
indep.
X,‘ o f;(z,-lﬁ,-), i=l,...,? (1. 1)

to indicate this. The measure g; is assumed to be Lebesgue measure when X; has an absolutely
continuous distribution, and is taken to be the counting measure on nonnegative integers when X;
has a discrete distribtion,

It is desired to estimate 8(d,,....4,) on the basis of X=(X,,...,X,). The parameter space is clearly
0=2,%...x2,CR* (p-dimensional Euclidean space). Let a=(ay,...,a,) be an available action (i.e.,
an estimate of #) and assume that the action space is §CR?. When action is taken and 8 is the true
parameter value, it is assumed that a loss L(6,a) is incurred, where L(6,a) is a real valued func-
tion defined on 4x 4.

A (nonrandomized) estimator d(X)=(d,(X),....d,(X)) is a function from the sample space to
o, which cstimates 0 by d(X) when X is observed. The risk function R(f,d) of an estimator d
is defined to be

R(8,d)=E,L(9,d(X)). 1.2)
An estimator d* is defined to be as good as d if
R(6,d*)<R(0,d) (1.3)
for all #=6, The estimator d* is said to be better than d (or dominates d) if, in addition to (1.3),
R(6,d*)<<R(0,d) 1.4

for some §=B6. The estimator d is admissible if there exists no better estimator, and is inadmissible
otherwise.

When X=(X,,...,X,) has a p-variate normal distribution with mean 6=(9.,...,6,) and the identity
covariancc matrix, i.e.,

indep.
X,‘ N N(O,-, l), l=l, ...,P. (1. 5)
Stein (1955) considered the problem of estimating 0=(6,,...,08,) based on X under the loss function,
p

L,a)=% (6:i—an? (1.6)

=1
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and proved the surprising result that the usual estimator d°(X)=X, which is the unbiased minimum
variance estimate (UMVE) of # is inadmissible when »>>3. A better estimator 4* was found in

James and Stein (1960), which has the form,
? N
a*X)="!1-(-2)/5 X2 I X (.7

Since then, a considerable amount of work by a number of researchers has gonc into finding the
cstimator better than the usual estimator in more general settings. For the normal distributions, the
results in the most general setting obtained so far can be found in Berger, et. al. (1977) and Gleser
(1979). And Efron and Morris (1973) used Bayesian ideas to evaluate Stein’s estimator by intro-
ducing the “relative saving loss” as the foundations of their analysis of the normal means problem.

Stein’s phenomenon has also been observed for many other distributions. In the simultaneous esti-
mation of several independent Poisson distributions, Clevension and Zidek (1975), Maritz (1969),
and Lee (1982), among others, developed estimators improving upon the usual estimators.

In this paper, we consider the problem of simultaneous estimation of means of several independent
Poisson distributions. In Section 2, some of the existing estimators are briefly reviewed. And in
Section 3, a new estimator is proposed by means of empirical Bayes ideas. In Section 4, this esti-
mator is compared with the existing estimators under normalized squared error loss by Monte Carlo

‘methods.
2. Simultaneous Estimators of Poisson Means

Supposc Xi,...,X, are independent Poisson random variables with means 4,,...,4, respectively, i.c.,

indep.
X o flxilA)=e A5/ (i+1), 420, i=1,...,p. 2. 1)
We wish to estimate the vector A=(2,,...,2,) with loss measured by the normalized squared crror loss,
LG d)=F it =d)*, @.2)
where d; is the estimate of A;, We allow our estimate of A; to depend on the entire vector of obser-
vations X=(X|, ....X,). The usual estimator 4°(X)=X,, which is thc UMVE of %, is known to bhc
a minimax with risk function R(2,d®) ==p for every value of 4.
Intuitively, one guesses that shrinking the usual estimator d° toward some point might yield a
better estimator as in the normal means ‘problem of Stein (1955).
Clevenson and Zidek (1975) obtained an cstimator which dominates the usual estimator d%(X)=
X, when p>>2. The new estimator d©% has the form,
a2t X =11~ of X i=lp (2.3)
which shrinks d° toward zero.
On the otherhand, assuming the common independent prior for 4;, Maritz (1969) obtained a Bayes

estimator d¥, which has the form,
di“’(X)=Xf—(£;T)(~>(Xf—X), i=1,...p 2.4
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where ¥=%, X/p and T*=3, (X~ X)¥/p.
i= i=1

Note that the estimator d¥(X) of Maritz (1969) shrinks the usual estimator 4°(X) toward X in
each coordinate.

In the same vein, Lce (1982) proposed another cstimator d“(X) which shrinks d°(X) toward
(X,...X),

dl(X) =X (,x):sﬂ (Xi XD, i=1, 0p (2.5)

wherc Sz-:—é“, (Xi—X)¥ (1.

i
The improvements upon the usual estimator d" achicved by using thesc estimators are not uniform
on the paramecter space ®. The bchaviors of these estimators are to be investigated in details in

Section 4,
3. An Empirical Bayes Approach
Let 4, i==1,...,p, are themselves independently exponentially distributed with pdf’s
R\ By = e, @D

Then, under the distributional assumptions (2.1) and (3.1) it is easy to show that the Bayes
estimator of 1, is given by
d*(X)=(1~-B)X,, i=1,....p 3.2)
where B=(1+p)"L
And the Bayes risk r(B,d*) of the estimator d* is
r(B,d*)=EpR(1,d*(X))=(1-B)p 3.3
where ‘Ep’ indicates the expectation under the distribution (3.1) with B==1/B—1. This should be
compared with the Bayes risk of 4° r(B,d%)=p. The ‘savings’ obtained by using d* instead of d°
are 7(B,d% —r(B,d*)=Bp. If B is large then B is small, but as § approaches zero, B approaches
one and the savings become considerable.
If B (or B) is not known, one can attempt to cstimate B from the data. Under (2.1) and (3.1)

i=

’ R . .. . . . . . »
Y=Y X; is a sufficient statistic for B, which has the Poisson distribution with mean > 1. Thus
i=1

it is natural to consider an estimator of the form,
d=(1-B(Y)X (3. 4)
wherer B(Y) is a reasonable estimate of B.
It is obvious that the premium paid for estimating B rather than knowing its exact value can
be expressed in terms of the “relative savings loss” (RSL) due to Efron and Morris (1973) as follows:

__r(B,d—r(B,d" __ r(B,d)—(1—B)p
RSLB. Y=g gy =7 (B d Bp :

Now a lemma is introduced which is fundamental to pursue the empirical Bayes approach.

8.5)

indep. indep.
Lemma. Let A; ™ Exponential (1/8), and X;|2; —_ Poisson () for i=1,--,p and
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d=(1-B(Y))X, Y=% X Then
=1

3 _ 2
RSL(B,d)=E, | ZZT D=8 ] (3.6)
where Z=Y|B has the negative binomial distribution with pdf
£ B =" \Br+(1-B)~ 3.7

Proof. See Lee (1983).

By virtue of the lemma, the empirical Bayes problem to estimate B from the data rcduces to
more familiar forms. On the basis of Z~NB(p+1, 1—B), one wishes to estimate B with loss
function,

L(B,B)=((B—B)/B}* (3.8)

Let n,(B) be the prior distribution on B having density (1—a)B™® on (0,1], a<l. Then the

Bayes rule is

A - b—a :
B,(Y)= Yipri-a" (3.9)
This lcads to an cstimator of the form,
a | _ P'—_a_.__,.__ |
d(X)= 11—~ j X (3.10)
Zjl Xi+p+1l—a

To assess the Bayes risk of this type of estimators explicitly, it is needed to calculate the negative
moments of the negative binomial random variables. These are very tedious and we have not atte-
mpted to carry out the details.

We now propose an estimator 4“5 as the one with @=0 in (3.10) on the basis of the empirical

results,

as@={1- L iX
iXH’P-l‘l

i=]

3.1D

4. Monte Carlo Comparisons

We were unable to find the risk functions in closed forms, and hence a Monte Carlo study has
been carried out to compare the estimators d°2, d¥, d*, d"S and d° for various parameter configurations.

For a specified parameter configuration, we plot the risk of each estimator estimated by Monte
Carlo methods based on 500 independent Poisson random variates generated by VAX-11/750 at Seoul
National University. These results are given in Figure A and B.

From the Figures,we observe the followings.

When the parameters are not quite different, d“ and 4" are seemed to perform well with risks
less than the half of that of d% But, when the differences among the parameters are significant,
the risks of d and d™ are exceeding the risk of d° the minimax value of the estimators. These
comes from the fact that d* and 4™ depend on the sample moments which are very sensitive to the

extreme values.
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On the otherhand, the behaviors of d°Z2 and 4% are stable in the sense that “he improvements are
prominent near zero and the risks increase strictly to that of d° as the parameters increase independent

of their configurations. Thus d¢? and 4“5 are dominating the usual estimator d°,
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Abstract

A problem of estimating the means of Poisson populations using independent samples is considered.
The total loss is the sum of component, normalized squared error losses. An empirical Bayes esti-
mator is derived and compared, by Monte Carlo methods, with existing estimators which are proposed
as improving estimators upon the usual one. Monte Carlo results show that the performance of the

derived estimator is satisfactory over the whole parameter space.
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